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1 Matrices and Systems of Linear Equations 

1.1 Definition of a Matrix and Basic Operations 
Definition 1.1 A matrix is any rectangular array of real numbers or variables of the form  
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The numbers or the variables in the matrix are called entries or elements of the matrix. If 
a matrix has m rows and n columns then we way that its size is m by n (m×n) matrix. An 
n×n matrix is called a square matrix or a matrix of order n. A 1×1 matrix is simply a 
real number. Matrices will be denoted by capital bold-faced letters A, B, etc, or by (aij) or 
(bij). For instance if  
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2×3 matrix while B is a 3×3 square matrix or a matrix of order 3.  The entry in the ith  row 
and jth column of an m×n matrix A is written aij. For an n×n square matrix, the entries 

nnaaaa ,...,,, 332211 are called the main diagonal elements. The main diagonal entries for the 

matrix B in (2) are 5, –2, 3 .  

Definition 1.2 Column and Row Vectors 
An n×1 matrix  
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is called a column vector. A 1× n matrix, ( )naaa ,...,, 21  is called a row vector.  
Special Matrices 
In matrix theory there are many special kinds of matrices that are important because they 
posses certain properties. The following is a list of some of these matrices. 

• A matrix that consists of all zero entries is called a zero matrix and is denoted by 0. 

For example 
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• An n × n matrix A is said to be a triangular matrix if all its entries below the main 
diagonal are zeros or if all its entries above the main diagonal are zero, [in other 
words a square matrix A is triangular if aij = 0 for  i >j or aij = 0 i < j.] More specially, 
in the first case the matrix is called upper triangular and in the second case the 
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matrix is called lower triangular. The following are triangular matrices. 
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Upper triangular matrix      Lower triangular matrix 
• An n × n matrix A is said to be a diagonal matrix if all its entries not on the main 

diagonal are zeros. In terms of the symbolism D = ,)( nnijd × D is a diagonal matrix if 

.0 jifordij ≠= The matrix D thus is given by 
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• If in (3) if all the diagonal elements are equal, it is referred to as a scalar matrix Sn, 
and if these elements are equal to 1, we have a unit or an identity matrix In of order n. 

Thus 
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are respectively a scalar and an identity matrix. 
Operations on Matrices 
Definition 1.3 Equality of Matrices 
Two n × n matrices A and B are equal if ijij ba = for each i and j. 
In other words, two matrices are equal if and only if they have the same size and their 
corresponding entries are equal. 
Matrix Addition 
When two matrices A and B are of the same size we can add them by adding their 
corresponding entries. 
Definition 1.4 If A and B are m × n matrices, then their sum is  
   .)( nmijij ba ×+=+ BA  
Example 1:  Addition of Two Matrices. 
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b) The sum of        
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is not defined, since A and B are of different sizes.  
Definition 1.5  Scalar Multiplication of a Matrix. 
If k is a real number, then the scalar multiple of a matrix A is  
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In other words, to compute kA, we simply multiply each entry of A by k. For instance, from 

definition 2.5, ⎟⎟
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The difference of two m × n matrices defined in the usual manner A –B =A+(–B) where –1B 
= –B. 
Properties of Matrix Addition and Scalar Multiplication 
Suppose A, B, and C are m × n matrices and α and β are scalars. Then 

i) A + B = B + A   (Commutative law of addition) 
ii) (A + B) + C = A + (B + C) (Associative law of addition) 
iii) α(A + B) = αA + αB 
iv) (α + β)A = αA + βA 
v) (αβ)A =α(βA) 
vi) 1A = A 

Note: Each of the above six properties can be proved by using Definition 2.4 and 2.5. 

1.2 Product of Matrices and Some Algebraic Properties, Transpose   
Definition 2.6 Let the number of columns in matrix A be the same as the number of rows 
in matrix B, then the matrix product AB exists and the element in row i and column j of 
AB is obtained by multiplying the corresponding elements of row i of A and column j of 
B and adding the product. 

In other words if matrix A has n column and matrix B has n rows then the ith row of A is 

),...,,( 21 inii aaa  and the jth column of B .2
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Moreover the number of rows and the number of columns of C are equal to the number  
of rows of A and the number of columns of B, respectively. Thus 
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Example 1 If  
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We note here that the size of A is 3×4 and the size of B is 4×2 consequently the size of 
AB is 3×2. 
Properties of Matrix Multiplication 

In defining the properties of matrix multiplication below, the matrix A, B, and C are 
assumed to be of compatible dimensions for the operations in which they appear. 

Property I Matrix multiplication is, in general, not commutative. That is AB ≠ BA. 
Observe that in Example 1 of this section BA is not even defined because the first matrix 
in this case B does not have the same number of columns as the number of rows of the 
second matrix A.  
Property II From AB = 0, it does not follow that either A = 0 or B = 0. Here 0’s are null 
matrices of appropriate order. 
Example 2 For the matrix A and B given by 
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a null matrix even though A or B is not a null matrix. 
Property II The relation AB = AC or BA = CA does not imply that B = C. The 
cancellation law does not hold in general as in a real numbers.  
Example 4 For the matrices  
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we have, by direct multiplication, 
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Property IV  Matrix multiplication is associative. That is 
A(BC)=(AB)C. 
Property V  The multiplication of matrices is distributive with respect to addition i.e. 
 A(B+C)=(AB+AC),   (B+C)A = BA + CA. 
Example 5   If 
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verify that A(BC) = (AB)C and A(B+C) = AB+AC. 
Solution: 
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Therefore  
A(B + C) = AB + AC. 
Notation. Since A(BC) = (AB)C, one may simply omit the parentheses and write ABC. 
The same is true for a product of four or more matrices. In the case where an n×n matrix 
is multiplied by itself a number of times, it is convenient to use exponential notation. 
Thus, if k is a positive integer, then 
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and in general 
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Example 7  Simplify the following matrix expression 
A(A + 2B) + 3B(2A – B) – A2 + 7B2 – 5AB 
Solution: Using the properties of matrix operation we get 

A(A + 2B) + 3B(2A – B) – A2 + 7B2 – 5AB = A2 + 2AB + 6BA – 3B2 – A2 + 7B2 – 5AB 
= – 3AB + 6BA + 4B2. 
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Transpose of a Matrix 
Definition 2.7 The transpose of a matrix A, denoted AT, is the matrix whose columns are 
the rows of the given matrix A.  
Symbolically  the transpose of an m × n matrix nmija ×= )(A  is an n × m matrix 

 mnjimnij aa ×× == )()( TTA  
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In the next theorem we give some important properties of the transpose. 
Theorem 1.8 Suppose A and B are matrices and k a scalar. Then  
i) (AT)T = A    ii) (A + B)T = AT + BT 
iii) (AB)T = BTAT   iV) (kA)T = kAT 
Proof: We give here the proof of iii) here the rest is left as Exercise. 
Note that  
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and the last step follows from the definition of a transpose. Also, 
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which on being transpose (i.e., on interchanging the subscript i and j) gives 
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now iii) follows from (1) and (2). 
The remaining properties can be proved similarly. 
Definition 1.9 An n×n matrix A= )( ija  is said to be: 

i) Symmetric if  jiij aa =  for all i and j, that is if AT =A. 

ii) Skew-symmetric if jiij aa −=  for all i and j, that is AT = – A.  
The following are examples of symmetric matrices: 
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Class Work 1 
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a) B+C  b) B – C  c) AB     d) AC  e) BTAT f) 
(AB)T          g) Determine the following elements of D = AB + 2C, without 
computing the complete matrix.  i) d12  ii) d23 

2. Let A be 3 × 5 matrix, B be 5 × 2 matrix, C be 3 × 4 matrix, D be 4 × 2 matrix, E be 
4 × 5 matrix, give the size of  a) 2(EB) + DA b) CD – 2(CE)B. 

3. If  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
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40
31

A  compute A4. 

4. Simplify  A(A – 4B) + 2B(A + B) – A2 + 7B2  + AB. 
5. Let            
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compute A2 and A3. What will An turn to be? 
6. Show that for a square matrix )( ija=A  

i) A + AT is a symmetric matrix 
ii)  A – AT is skew-symmetric matrix 
iii) AAT and ATA, A2 are symmetric matrices.  

1.3 Elementary row operations and echelon form 
We use matrices to describe systems of linear equations. There are two important matrices 

associated with every system of linear equations. The coefficients of the variables form a 
matrix called the matrix of coefficients of the system. The coefficients, together with the 
constant terms, form a matrix called the augmented matrix of the system. For example, the 
matrix of coefficients and the augmented matrix of the following system of linear equations 
are as shown. 
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Observe that the matrix of coefficients is a submatrix of the augmented matrix. The 
augmented matrix completely describes the system. 

Transformations called elementary transformations can be used to change a system of 
linear equation into another system of linear equations that has the same solution. These 
transformations are used to solve systems of linear equations by eliminating variables. In 
practice it is simpler to work in terms of matrices using equivalent transformations called 
elementary row operations. These transformations are as follows: 

Elementary transformations 
1. Interchanging two equations 
2. Multiplying both sides of an equation 

by a nonzero constant 
3. Add a multiple of one equation on to 

another equation. 
 

Elementary row operations 
1. Interchanging two rows of a matrix 
2. Multiply the elements o row by a 

nonzero constant  
3. Add a multiple of the elements of one 

row to the corresponding elements of 
another row.

Systems of equations that are related through elementary transformations, and thus have 
the same solutions, are called equivalent systems. The symbol ≈ is used to indicate 

Customer
Note
Unmarked set by Customer

Customer
Note
Cancelled set by Customer

Customer
Note
None set by Customer
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equivalent system of equations. The next example compares the elementary transformation 
with elementary row operations. 
Example 1  Solve the following system of linear equations.  

 
62
332

2

321

321

321

−=−−
=++

=++

xxx
xxx

xxx
 

Solution:                                                               
Equation Method 
Initial system 

62
332

2

321

321

321

−=−−
=++

=++

xxx
xxx

xxx
  

 
Eliminate x1 from the 2nd and 3rd equations  
 

832
1
2

1)1(3
1)2(2

32

32

321

−=−−
−=−

=++

−+
−+

≈

xx
xx
xxx

EqEq
EqEq  

 
Eliminate x2 from the 1st and 3rd equations 

105
1

32

2
21

3

32

31

23 −=
−=−

=++

+
−
≈

x
xx
xx

EqEq
EqEq   

 
Make coefficient of x3 in 3rd Eq 1 

2
1

32

3
5
1

3

32

31

=
−=−

=++

−

≈

x
xx
xx

Eq  

 
Eliminate x3 from 1st and 2nd equations 

2
1
1

32
31

3

2

1

=
=
−=+

+
−
≈

x
x

x

EqEq
EqEq  

 
The solution is 2,1,1 321 ==−= xxx  

Matrix Method 
Augmented matrix 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−− 6
3
2

211
132
111

 

 
we refer to the first row as the pivot row 
and the entry 1 circled in the first row as 
the pivot 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−−
−

−
−
≈

8
1

2

320
110

111
2

13

12

RR
RR  

 
Create appropriate zeros in column 2 
 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−
−

−
−
≈

10
1

3

500
110

201

2 23

21

RR
RR  

 
Make the (3,3) element 1 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−−

≈

2
1

3

100
110

201

5
1

3R  

 
Create zeros in column 3 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −

+
−
≈

2
1
1

100
010
001

2

32

31

RR
RR  

Matrix corresponding to the system  

2
1
1

3

2

1

=
=
−=+

x
x

x
 

The solution is 2,1,1 321 ==−= xxx  

Customer
Inserted Text
Prepared by Tibebe-selassie T/mariam

Customer
Note
Rejected set by Customer

Customer
Note
Accepted set by Customer

Customer
Note
MigrationPending set by Customer

Customer
Note
Marked set by Customer
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Class work 2 
Solve the following system of linear equations. 

 
833

1852
1242

321

321

321

−=−+−
=+−
=+−

xxx
xxx
xxx

 

Reduced row echelon form and elementary row operations: 
In above motivating example, the key to solve a system of linear equations is to transform 
the original augmented matrix to some matrix with some properties via a few elementary 
row operations. As a matter of fact, we can solve any system of linear equations by 
transforming the associate augmented matrix to a matrix in some form. The form is 
referred to as the reduced row echelon form.  

Definition of a matrix in reduced row echelon form: 
A matrix in reduced row echelon form has the following properties: 
1. All rows consisting entirely of 0 are at the bottom of the matrix. 
2. For each nonzero row, the first entry is 1. The first nonzero entry is called a leading 1. 
3. For two successive nonzero rows, the leading 1 in the higher row appears farther to the 

left than the leading 1 in the lower row. 
4. If a column contains a leading 1, then all other entries in that column are 0. 
Note: a matrix is in row echelon form as the matrix has the first 3 properties. 
Example: 
 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0
0
0
1
2

0
0
1
0
0

0
0
0
1
0

0
0
0
0
2

0
0
0
0
1

 

and  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0
0
1
0
0

0
0
0
0
3

0
0
0
1
0

0
0
0
0
0

0
0
0
0
1

 

are the matrices in reduced row echelon form. 
The matrix  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

0000
2100
5210
4321
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is not in reduced row echelon form but in row echelon form since the matrix has the 
first 3 properties and all the other entries above the leading 1 in the third column are not 
0. The matrix  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

0000
2210
5210
4301

 

are not in row echelon form (also not in reduced row echelon form) since the leading 1 in 
the second row is not in the left of the leading 1 in the third row and all the other entries 
above the leading 1 in the third column are not 0. 

Definition of elementary row operation: 
There are 3 elementary row operations: 
1. Interchange two rows 
2. Multiply a row by some nonzero constant 
3. Add a multiple of a row to another row. 
 
Example: 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=

9
2

2

6
0
1

3
3
0

3
2
0

A . 

 Interchange rows 1 and 3 of A 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−

⇒
2
2
9

1
0
6

0
3
3

0
2
3

                 

 Multiply the third row of A by 
3
1

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−⇒

3
2

2

2
0
1

1
3
0

1
2
0

                 

 Multiply the second row of A by -2, then add to the third row of A 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−−
⇒

5
2

2

6
0
1

3
3
0

1
2
0

                 

Important result:  
 Every nonzero nm ×  matrix can be transformed to a unique matrix in reduced row 

echelon form via elementary row operations.  
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 If the augmented matrix [ ]bAM  can be transformed to the matrix in reduced row echelon 
form [ ]dC M  via elementary row operations, then the solutions for the linear system 
corresponding to [ ]dC M  is exactly the same as the one corresponding to [ ]bAM .  

C lass work 2 
Reduce the following matrices to row echelon and reduced row echelon forms. 

1. 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −

310
015
102

  2. 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

7654
6543
5432
4422

  3.  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

3930
2310
3210

 

1.4  Inverse of a matrix and its properties 
We motivate the idea of the inverse of a matrix by looking at the multiplicative inverse of a 

real number. If number b is the inverse of a, then 

1=ab   and 1=ba  

for example, ½ is the inverse of 2 and we have 
   ( ) ( ) .122 2

1
2
1 ==  

These are the ideas we extend to matrices. 
Definition 2.13 An n×n matrix A is said to be nonsingular or invertible if there exists a 
matrix B such that AB=BA=In. The matrix B is said to be the multiplicative inverse of A. 
Note: If B and C are both multiplicative inverses of A, then  
B = BIn = B(AC) = (BA)C = InC = C. 
Thus an invertible matrix has a unique inverse. 
Example 1 Show that the matrix B is the inverse of matrix A if 

  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−

−
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
=

225
5615

113

310
015
102

BA  

Solution: Observe that 

 3

100
010
001

225
5615

113

310
015
102

IAB =
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−

−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
=  

and 

 3

100
010
001

310
015
102

225
5615

113
IBA =

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−

−
=  

Thus AB = BA =I3, which shows matrix B is the inverse of A. 
Caution.    I) Inverse of a matrix is only defined for square matrices. 

II) A matrix may not be invertible even if it is square matrix. 
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For example, Let ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

00
10

A  then if a is invertible then there exists a matrix say 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

'
'

yy
xx

B  such that  .
10
01

00
'

'
'

00
10

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ yy
yy
xx

 

Implying 0=1, which is absurd. Thus A is not invertible. 
Definition 1.14 An n×n matrix is said to be singular if it does not have a multiplicative 
inverse. 
Notation: Let A be an invertible matrix. We denote its inverse by A-1. 
Gauss-Jordan Elimination for finding the inverse of a matrix 
Let A be an n×n matrix. 

1. Adjoin the identity n×n matrix In to A to form the augmented matrix (A: In) 
2. Compute the reduced echelon form of (A: In). If the reduced echelon form is of the 

type (In: B), then B is the inverse of A. If the reduced echelon form is not of the type 
(In: B), in that the first n×n submatrix is not In, then A has no inverse. 

Example 2 Determine the inverse of the matrix  

   
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−
−−

=
531
532
211

A  

Solution: Applying the method of Gauss-Jordan Elimination, we get 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−

−
+
≈

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−−

−
+
≈

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

−−
−

≈

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−−

−−

+
−
≈

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−
−−

=

123100
135010

110001

123100
012110
013101

2

101320
012110
001211

101320
012110
001211

2
100
010
001

531
532
211

):(

32

31

23

21

2

13

123

RR
RR

RR
RR

R

RR
RRIA

 

Thus  

  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−=−

123
135

110
1A  

The following example illustrates the application of the method for a matrix that does not 
have an inverse. Letter on in this chapter we devise more effective method to decide whether 
a matrix invertible. 
Example 3 Determine the inverse of the matrix below, if it exists. 
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⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
=

412
721
511

A  

Solution: Applying the method of Gauss-Jordan Elimination we get 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−

+
−
≈

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−−
−

−
−
≈

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
=

135000
011210
012301

3

102630
011210
001511

2100412
010721
001511

):(

23

21

13

123

RR
RR

RR
RRIA

 

There is no need to proceed further. The reduced echelon from cannot have a one in the 
(3,3) location. That is the reduced echelon form cannot be of the form (In: B). Thus A-1 
does not exist. 
 
 
 
 
Class work 4 Find the inverse of the matrix below if it exists. 

a) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
32
11

  b)  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

211
120
312

   c) 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−

−

325
121
321

 

Properties of Inverse Matrices  
Let A and B be invertible matrices and c a nonzero scalar. Then  
1. (A–1)–1 = A 
2. 111)( −− = AA cc  

3. 111)( −−− = ABAB  
4. nn )()( 11 −− = AA  
5. tt )()( 11 −− = AA  
we verify the 1st and 3rd results to illustrate the techniques involved leaving for the reader the 
remaining results to verify. 
(A–1)–1 = A this result follows directly from the definition of inverse of a matrix. Since A-1 is 
the inverse of A, we have 
   nIAAAA == −− 11  
This statement also tells us that A is the inverse of A-1. Thus (A–1)–1 = A. 

111)( −−− = ABAB  we want to show that the matrix 11 −− AB  is the inverse of the matrix AB. 
We get, using the properties of matrices,  

    

( )

n

n

IAA

AAI
ABBAABAB

==

=

=

−

−

−−−−

1

1

1111 )(
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Similarly, it can be shown that (B-1A-1)(AB) = In. Thus 11 −− AB  is the inverse of the 
matrix AB. 

Example: If ,
13
14
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=A  then it can be shown that .

43
111
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=−A Use this 

information to compute (At)-1. 
Solution: Result 5 above tells us that if we know the inverse of a matrix we also know 
that inverse of its transpose. We get 

  .
41
31

43
11

)()( 11
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
== −−

t
tt AA  

Class work 

If ,
29
15

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=A then ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
=−

59
121A . Use this information to determine 

a) .)()),)2( 131 −−− tt cb AAAA    

1.5  Determinants and its properties 
To every square matrix nnija ×= ][A  is associated a number or an expression called 
the determinant of A and is denoted by |A| or det (A).  

Determinant of order one 
Let ][ 11a=A  be a square matrix of order one. Then det (A) = a11. By definition, if A is 
invertible, then 011 ≠a  and so det A≠0. Also, conversely if det A≠0, then 011 ≠a  and so, A 
is invertible. 
Determinant of order two 
The determinant of a 2×2 matrix is given by 

  .21122211
2221

1211 aaaa
aa
aa

−=  

Example 1   Calculate the determinant of the following matrices.                            
a) b) 

                        
Solution:  

(a)  

 
(b)  
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Definition 1.15 Let nnija ×= ][A  and ijM  be the (n-1)×(n-1) matrix obtained from A by 
deleting the row i and j column containing ija . The det( ijM ) is called the minor of ija . 

We define the cofactor ijC  of ija  by    ).det()1( ij
ji

ij MC +−=  
Example 2 Determine the minors and cofactors of the elements 11a  and 32a  of the 
following matrix A.  

  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

645
213
452

A  

Solution: Applying the above definitions we get the following. 
Minor of 11a :  
 
Cofactor of 11a : 2)det()1( 11

11
11 −=−= + MC . 

Minor of 32a : 8)4.3()2.2(
23
42

645
213
452

)det( 32 −=−===M  

Cofactor of 32a : .8)det()1( 32
23

32 =−= + MC  
Definition 1.16 The determinant of a square matrix is the sum of the product of the 
elements of the first row and their cofactors. 
If A is 3×3, 131312121111 CaCaCa ++=A  

If A is 4×4, 1414131312121111 CaCaCaCa +++=A  

 M   
If A is n×n, nnCaCaCaCa 11131312121111 ... ++++=A  

These equations are called cofactor expansions of |A|. 
Example 3 Evaluate the determinant of the following matrix A. 

   
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

645
213
452

A  

Solution: Using the elements of the first row and their corresponding cofactors, we get 
 131312121111 CaCaCa ++=A  

      

16)512(4)1018(5)86(2
45
13

)1(4
65
23

)1(5
64
21

)1(2 432

−=−+−−−=

−+−+−=
 

We have defined the determinant of a matrix in terms of its first row. It can be shown that the 
determinant can be computed using a different row or one of the columns. For example the 
cofactor expansion along the second column yields 

2)24()61(
64
21

645
213
452

)det( 11 −=⋅−⋅===M
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16

)124(4)2012(1)1018(5
23
42

4
65
42

1
65
23

5

−=
−−−+−−=

−+−=A

 

As we have seen it is not necessary to limit ourselves to using the first row for the cofactor 
expansion. We state the following theorem without proof. 
Theorem 1.17 If A is an n × n matrix with n ≥ 2, then det(A) can be expressed as a cofactor 
expansion using any row or column of A. 

 
njnjjjjj

ininiiii

aaa
aaa

CCC
CCCA

+++=
+++=

...
...)det(

2211

2211  

for i = 1, . . .,n    and   j = 1, . . .,n. 
The cofactor expansion of a 4 × 4 determinant will involve four 3 × 3 determinants. One can 
often save work by expanding along the row or column that contains the most zeros.  
Note: There is a useful rule that can be used to give the sign part, (-1)i+j, of the cofactors in 
these expansion. The rule is summarized in the following array. 

   

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−+−+
+−+−
−+−+

M

L

L

L

  

If, for example, one expands in terms of the second row, the signs will be – + – etc. The signs 
alternate as one goes along any row or column.  
Example 4 To evaluate the determinant of  

   

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

3102
3010
0540
0320

 

one would expand down the first column. The first three terms will drop out, leaving  

  .12
54
32

32
301
054
032

2 =⋅⋅−=−  

Example 5   Calculate  
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Solution Choose row 3, since it has the most zeros  

   

 =0 

 
This example illustrates the fact that if a matrix has a row (or column) containing all zeros, 
the determinant is zero. 
Example 6   Calculate  

 
Solution Choose column 1 since it has the most zeros.  

 

    
    
Another look at Example 6 shows us that the determinant of the given matrix was the 
product of the diagonal elements. Although this does not happen for all matrices, it 
does if the matrix is upper or lower triangular.  
Theorem 2.18 If nn×A  is upper (or lower) triangular, then. nnaaa ...)det( 2211=A  
Proof. Let us use the principle of mathematical induction. The proposition P(n) is as 
follows: An n × n upper triangular matrix has determinant. nnaaa ...2211  First, we check 
P(2). When ,  

 
and by definition 2211)det( aa=A . The proposition is true for . For the induction 
hypothesis we suppose that P(k) is true. That is, suppose that if Ak×k is upper triangular, 
then ....)det( 2211 kkkk aaa=×A  
To complete the proof, we must show that ....)det( 11221111 +++×+ = kkkk aaaA . Writing 11 ++ kkA , 
we have  



 Prepared by Tibebe-selassie T/mariam 18

 
We compute )det( 11 +×+ kkA  by using row k +1 to find  

  
   

 
    

      

 
 
Thus by the principle of mathematical induction, the proposition is true for all .  
Proof. [(Alternative) Proof] Let  

 
Use the first column to calculate:  

 
Use the first column again:  
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Continuing to always use the first column gives  

 
 

   

      

 
 

Both proofs are almost the same for lower triangular matrices. This is left to the 
problems.  

So, if A is upper or lower triangular, the determinant is easy to calculate. To use this 
fact, we can row-reduce a matrix to upper or lower triangular form, calculate the 
determinant of the resulting matrix, and then relate that determinant to the determinant 
of the original matrix.  

Class work 
1. Let 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−−
−

−

=

2841
0534
1218
5102

A  

Find the following minors and cofactors of A. 
(a) M12 and C12   (b) M43 and C43 
2. Find the determinants of the following matrix using as little computation as possible. 

 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−

−

0403
4837
0504
0321

 

Properties of a Determinant 
The following theorem tells us how elementary row operation affect determinants.  It also 
tells us that these operations can be extended to columns. 
Theorem 1.19 Let A be an n × n matrix and c be a nonzero scalar. 
a) If a matrix B is obtained from A by multiplying the elements of a row (column) by c then 

|B| = c|A|. 
b) If a matrix B is obtained from A by interchanging two rows (column) then   |B| = –|A| 
c) If a matrix B is obtained from A by adding a multiple of one row (column) to another 

row(column), then |B| = |A|. 
The proof is left as exercise. 
Example 7 Evaluate the determinant 

   
392

361
243

−
−−

−
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Solution: We examine the rows and columns of the determinant to see if we can create zeros 
in a row column the above operations. Note that we can create zeros in the second column by 
adding twice the third column to it: 

  
332

301
203

2
392

361
243

32 −
−

−

+
=

−
−−

−

CC
 

Expand this determinant in terms of the second column to take advantage of the zeros. 

 .21)29)(3(
31
23

)3( −=−−=
−

−
−=  

We shall find that matrices that have zero determinant play a significant role in theory of 
matrices. 
Definition 1.20 A square matrix A is said to be singular if |A| = 0. A is nonsingular if |A| ≠ 
0. 
The following theorem gives information about some of the circumstance under which we 
can expect a matrix to be singular. 
Theorem 1.21 Let A be a square matrix. A is singular if 

a) all the elements of a row (column) are zero 
b) two rows (columns) are equal. 
c) Two rows(columns) are proportional. 

Example 8 Show that the following matrices are singular. 
1. 

a) 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−
=

904
103
702

A    b) 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
=

842
421
312

B  

 
Solution:  

a) All the elements in column 2 of A are zero. Thus |A| = 0. 
b) Observe that every element in row 3 of B is twice the corresponding element in row 

2. We write 
(row 3) = 2(row 2) 

Row 2 and row 3 are proportional. Thus |B| = 0. 
The following theorem tells us how determinants interact with various matrix operations. The 
examples following it demonstrate the theorem in use. 
Theorem 1.22 Let A and B be n × n matrices and c be a nonzero scalar. 

a) Determinant of a scalar multiple : |cA|=cn|A| 
b) Determinant of a product: |AB| = |A||B| 
c) Determinant of a transpose: |At| = |A| 

d) Determinant of an inverse: 
A

A 11 =−  (assuming A-1 exists). 

Example 9 If A is a 2×2 matrix with |A| = 4, use Theorem 2.22 to compute the following 
determinants. 
a) |3A|   b) |A2|   c) |5AtA-1|, assuming A-1 exists. 
Solution: 

a) |3A| = (32)|A|= (9).4 = 36 
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b) |A2| = |AA| = |A||A| =(4).(4) =16 

c) |5AtA-1| = (52)|AtA-1| = 25|At||A-1| = .25125 =
A

A  

Example 10 Prove that AAAA =− t1  
Solution: by the properties of matrices, determinants, and real numbers we get 

 AAA
A

AAAAAAAAAAAA ===== −−−− 1)( 1111 tttt . 

Class Work 

1. Find all the values of x that make the following determinant zero.    ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−−
12

21
xx

x
 

2. If ,
211
402
311

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−−

=A then |A| = –2. Use this information, together with the properties 

of determinants, to compute the determinant of the following matrices.  a) 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−−

422
402
311

  b) 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−
−

211
311
402

 c) 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−
−−

211
1024
311

 

3. If A and B are 3 × 3 matrices and |A|= – 3, |B| = 2, compute the following determinants.  
         a) |AB|  
 b) |AAt|  c) |(AtB-1)t| 

 

1.6 Determinant Method of Finding Inverse Matrices 
We first introduce tools necessary for developing a formula for the inverse of a 
nonsingular matrix. 

Definition 2.23 Let A be an n × n matrix and ijC  be the cofactor of ija . The matrix 

whose (i, j)th element is ijC  is called the matrix of cofactors. The transpose of this 
matrix is called the adjoint of A and is denoted adj(A). 

 

matrixadjo
nnnn

n

n
t

nnnn

n

n

cofactorofmatrix
nnnn

n

n

CCC

CCC
CCC

CCC

CCC
CCC

CCC

CCC
CCC

int
21

22212

12111

21

22221

11211

21

22221

11211

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

L

MMM

L

L

L

MMM

L

L

L

MMM

L

L

  

Example 11 Find the matrix of cofactors and the adjoint matrix of the matrix  

  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−−
=

413
254
312

A  
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Solution: The cofactors of A are 

 18
41
25

11 ==C  10
43
24

12 =
−
−

−=C   11
13
54

13 =
−
−

=C  

 

 7
41
31

21 =
−

−=C  1
43
32

22 =
−
−

=C   5
13
12

23 =
−

−−
−=C  

  

 17
25
31

31 −=
−

=C  8
24
32

32 −=
−
−

−=C   14
54
12

33 −=
−

−−
=C  

Thus the matrix of cofactors of A is 

  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−− 14817
517

111018
 

and the adjoint of A is the transpose of this matrix 

  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

=
14511
8110

17718
)(Aadj  

The next lemma is important for the proof of the theorem on inverse of a nonsingular matrix. 
Lemma 1.24 Let A be an n × n matrix. If Cjk denotes the cofactor of jka  for k=1,…,n then 

⎩
⎨
⎧

≠
=

=+++
jiif
jiif

aaa jijiji 0
... 111111

A
CCC    (1) 

Proof: If i = j, (1) is just the cofactor expansion of det(A) along the ith row of A. If i ≠ j, then 
it is the expansion of the determinant of a matrix in which the jth row of A has been replaced 
by the ith row of A, thus this is matrix having two identical rows consequently its 
determinant is zero as in (1). 
Theorem 2.25 Let A be a square matrix with .0≠A A is invertible with  

    )(11 A
A

A adj=− . 

Solution: From Lemma 2.24 we observe that the product Aadj(A) is thus a diagonal matrix 
with the diagonal elements to get |A|In. Thus 
    nadj IAAA =)(  
If A is nonsingular, det(A) is a nonzero scalar and we may write 

    nadj IA
A

A =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
)(1

 

Thus  

    ).(11 A
A

A adj=−  
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Example 12 For a 2 × 2 matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2221

1211

aa
aa

 

   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

1121

1222

aa
aa

adj A  

If A is nonsingular, then 

   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

=−

1121

1222

21122211

1 1
aa
aa

aaaa
A  

Example 13 Use the result of Theorem 2.25 to compute the inverse of the matrix 

   
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−−
=

413
254
312

A  

Solution: |A| is computed and found to be –13. This matrix was discussed in Example 11. 
There we found that  

   
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

=
14511
8110

17718
)(Aadj  

The formula for the inverse of a matrix gives 

   .)(
13
1

13
14

13
5

13
11

13
8

13
1

13
10

13
17

13
7

13
18

1

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−−
−−

=−=− AA adj  

 
Class work 
Determine whether the following matrices have inverse. If a matrix has an inverse, find the 
inverse using the formula for the inverse of a matrix. 

a) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
23
41

   b) 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

354
210
321

 

We now discuss the relationship between the existence and uniqueness of the solution to a 
system of n linear equations in n variables and the determinant of the matrix of coefficient of 
the system. 

1.7  System of linear equations and characterization of solutions  
Theorem 2.26  (Cramer’s Rule). Let A be an n × n nonsingular matrix and let B ∈ Rn. Let 
Ai be the matrix obtained by replacing the ith column of A by B. If X is the unique solution 
to AX =B, then 

     niforx i
i ...,,2,1==

A
A
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Proof: Since 

   BA
A

BAX )(11 adj== −  

it follows that 

   
.

...2211

A
A

A

i

ninii
i

CbCbCb
x

=

+++
=

  

The next theorem characterizes the solution of a system of equations using the determinant 
of the coefficient matrix and the matrix Ai defined in Cramer’s rule above. 

Theorem 1.26 Let AX = B be a system of n linear equations in n variables.  
i) If A  ≠ 0, then AX = B a unique solution. The system has a trivial solution that 

is X=0 if B = 0. 
ii)  If A = 0, and at least one of the Ais is nonzero the system has no solution. For, if 

A = 0 and |A1| ≠ 0, then X A =|A1| leads to a contradiction. Such systems are 
called inconsistent  

iii) If A = 0 and nii ,...,2,1,0 ==A  the system my have an infinite number of 
solutions or may not have a solution. A system having an infinite number of 
solutions is called dependent. 

Definition 1.27 If AX = 0 then the system of equations is said to be homogeneous. 
Example 1   Solve  

 

   

    
    

 
by using Cramer’s rule. 
Solution First we calculate :  

 
 
Now substitute  

 
for column 1 and calculate  
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Similarly,  

 

 

   

 

 

   

 
The answer checks, by direct substitution. 
The following two systems of linear equations, each of which has a singular matrix of 
coefficients, illustrate that there may be many or no solutions. 

txtxtx

xxx
xxx
xxx

xxx
xxx
xxx

solutionnosolutionmany

==+=

=++
=++
=++

=+−
=+−
=+−

321

321

321

321

321

321

321

,2,1

02
332
332

2432
3543

132

 

 
Example 2 Determine values of r for which the following system of equations has 
nontrivial solutions. Find the solutions for each value of r. 

  
0)1(2
0)4()2(

21

21

=++
=+++

xrx
xrxr

 

Solution: This system is a homogeneous system of linear equations. It thus has the trivial 
solution by Theorem 2.26 (i). The same theorem part (iii) tells us that there is the 
possibility of other solution only if the determinant of the matrix of coefficients is zero. 
Equating this determinant to zero, we get 
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0)3)(2(
06

0)1(2)1)(2(

0
12
42

2

=+−
=−+

=+−++

=
+
++

rr
rr

rrr
r
rr

 

Thus the determinant is zero if r = –3 or r = 2. 
r = –3 results in the system 

    
022

0

21

21

=−
=+−

xx
xx

    

this system has infinitely many solutions, ., 21 txtx ==  
2=r results in the system 

    
032
064

21

21

=+
=+

xx
xx

 

This system has many solutions, .,2/3 21 txtx =−=  
Cramer’s rule gives us a convenient method for writing down the solution to an n × n 

system of equations in terms of determinants. In this method we can solve for any one of the 
sxi  with out solving the solution of the entire system. However to compute the solution of 

the system as a whole, one must evaluate n + 1 determinants of order n. Evaluating even two 
of these determinants generally involves more computation than solving the system using 
Gaussian Elimination that we are going to see bellow. 

The Gaussian Elimination Method 
Let AX = B be a linear system of equations then 

1. Write down the augmented matrix of the system of linear equations. 
2. Find an echelon form of the augmented matrix using elementary row operations. 
3. Write down the system of equations corresponding to the echelon form. 
4. Use back substitution to arrive at the solution. 

Example 3 Solve the following system of linear equations using the method of Gaussian 
elimination. 

  
412842

222
1232

4321

4321

4321

=+++
=+−−−

−=+++

xxxx
xxxx

xxxx
 

Solution: Solving the augmented matrix, create zeros below the pivot in the first column. 
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⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −≈

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −

−
≈

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −

−
+
≈

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−−

−

21000
13100
12321

2
1

42000
13100
12321

2

68200
13100
12321

2412842
21221
12321

3

23

13

12

R

RR

RR
RR

 

We have arrived at the echelon form 
The corresponding system of equation is 

    
2
13

1232

4

43

4321

=
=+

−=+++

x
xx
xxxx

 

The system is now solved by back substitution i.e the value of 4x is substituted into the 
second equation to give 3x . 3x  and 4x  are then substituted into the first equation to get 1x . 
We get 

    
5
1)2(3

3

3

−=
=+

x
x

 

Substituting 52 34 −== xandx  into the first equation we have  

    
102

102
1)2(2)5(32

21

21

21

+−=
=+

−=+−++

xx
xx

xx
 

Let tx =2 hence the system has infinitely many solutions. 
Example 4 Determine the value of k so that the following system of unknown x, y, z has 
(i) a unique solution, (ii) no solution, (iii) an infinite number of solutions. 

   
23
332

1

=++
=++

=−+

ykyx
kzyx
zyx
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Solution: The augmented matrix determined by the system is  

  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−+−
+

−
≈

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−++−−
+

−

−−
≈

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
+

−

−
−
≈

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−
−

kkk
k

kkk
k

RkR

k
k

RR
RR

k
k

2)3)(2(00
1210
1111

24)2)(1(00
1210
1111

)1(

1410
1210
1111

2

231
332
1111

23

13

12

 

The system has a unique solution if the solution if the coefficient of z in the third equation 
is not zero; that is, if k ≠ 2 and k ≠ -3. In case k = 2, the third equation reduces to 0 = 0 and 
the system has infinite equation reduces to 0 = 5 and the system has no solution. 
Summarizing (i) k ≠ 2 and k ≠ 3, (ii) k = -3, (iii) k =2. 

Class Work 
Solve the following systems of equations using  

a) Cramer’s rule (if possible) 
b) Gaussian elimination method. 

i)   
525
22
7372

321

321

321

=++
=++
=++

xxx
xxx
xxx

    ii) 
5524

232
36

321

321

321

=+−
=+−
=−+

xxx
xxx
xxx

 

 
 
MATH 231 WORKSHEET II  
 

1. Given that 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

− 00
10
01

21
11

00
00
001

3
1

2
1 A  find A. 

2. For ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∈

10
1

,
n

letNn nA  then show that                                           

(i) mnmn AAA +=      (ii) nn −
− = AA 1  

3. Let .
cossin
sincos

)( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
θθ
θθ

θf  Then show that ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
θθ
θθ

θ
nn
nn

f n

cossin
sincos

)( for Nn ∈  

4. Find the inverse of the following matrices if possible.                           

(a) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
58
31

  (b) 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

549
213
321

    (c)  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−−

−−
−

3111
4102
3121
5731

      (d)  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

121
212
101
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5. Find the values of x for which the matrix 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=
x21
101

011
A  is invertible. In that case 

give A-1. 
6. Find the determinants of the matrices in 4 above. 
7. What is the determinant of the product matrix below?   

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −

100
01

21

101
010
102

100
012
021

2
1

3
1

 

8. Given that ,35
100
012
021

100
012
021

IA =
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
 what is det(A)? 

9. Find the determinant and inverse of the following matrix                             

(a) 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

dcba
0100
0010
0001

  (b)  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

222

111

cba
cba  (c) 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ +

xxx
xxx
xxx

λ
λ

 

10. For what values of k will the system      

 
0
0
0

321

321

321

=++
=++
=++

xxkx
xkxx

kxxx
                         

have a non-trivial solution? In each case what are these solutions? 
11. Solve each of the following system of linear equations by using:                   

i)  Gaussian elimination method                            
ii)  Cramer’s rule, when ever possible                 

a)   
423

152
−=−

=−
yx
yx

  b) 
992
123

321

321

=−+−
−=−+

xxx
xxx

        c)  
42

2223
662

=++
−=−+

=++

zyx
zyx
zyx

      

 

      d)  
53

32
0743

−=−+
=−

=++

zyx
zy

zyx
  e)  

132
322
1

321

321

321

=−+
=+−−
−=−+−

xxx
xxx

xxx
    d)  

4
522
432
42

=+−
=+−+
=++

−=−++

wyx
wzyx
wzy
wzyx

 

12. A man refused to tell anyone his age, but he likes to drop hints about it. He then 
remarks that twice his mother’s age add up to 140 and also that his age plus his 
father’s age add up to 105 Furthermore, he says that the sum of his age and his 
mother’s age is 30 more than his father’s age. Calculate the man’s age or show that 
his hints contradict one another. 
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13. Find the eigenvalues and eigenvectors of the matrix:    

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
11
21

A     
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

=
015
950
015

B  

14. If D is a diagonal matrix       

 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

nd

d
d

L

MMM

L

L

00

00
00

2

1

D                 

a) What is the characteristic polynomial of D?                 
b) What are its eigenvalues? 

15. Show that if θ∈ℜ and θ is not an integral multiple of π, then the matrix  

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
θθ
θθ

cossin
sincos

 does not have a nonzero eigenvector in ℜ2. 

16. The eigenvalues of A-1 are the reciprocals of the eigenvalues of a nonsingular matrix 
A. Furthermore, the eigenvectors for A and A-1 are the same. Verify these facts for 
the matrices given below 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
51
15

   
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−

544
101
121
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A 

   B 

C 

D

AB  
AB−

AB
2
3

AB
3
2

−

2 Vectors and Vector Spaces  
2.1 Scalars and Vectors; Located Vectors in R2 and R3 
A scalar is simply a real number, a complex number or a quantity that has magnitude but 
no direction. For instance length, temperature, and blood pressure are represented by real 
numbers hence are scalar quantities. A vector, on the other hand, is usually described as a 
quantity that has both magnitude and direction. Geometrically, a vector is represented by 
a directed line segment that is an arrow and is written either as a boldface symbol v or 

ABorvr  for instance weight, velocity, frictional force are vector quantity. 
Notations and Terminologies     
A vector whose initial point is A and whose terminal point is B is given by AB  and the  

magnitude (or length) of vector AB  is denoted by BA . Moreover two vectors that have 

the same magnitude and the same directions are said to be equal. Thus in fig 1 below 
.CDAB =  

 
 
 
 
 
 
 
     Fig 1 
Because of this property of vectors that we can move vectors from one position to 
another provided its magnitude and direction are maintained, so we say that vectors are 
free by their very nature. The negative of a vector AB , written – AB , is a vector that has 
the same magnitude as AB  but opposite in direction. If ,0≠k then k AB  is a vector that 

is k  as long as AB . When k=0 we say 0 AB = 0 (zero vector). Two vectors are said to be 
parallel if and only if they are nonzero scalar multiples of each other. 
 
 
 
 
 
 
      Fig 2 
Addition and Subtraction 
Two vectors can be considered as having a common initial, such as in fig 3a.  Thus, if 
nonparallel vectors AB  and AC are the sides of a parallelogram as in fig 3b, we say the 
vector that is the main diagonal, or AD , is the sum of AB  and AC  and we write 
                   .ACABAD +=  
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A A C C 

B B D 

A
A

C
C

B 

B 

- AC   

ACAB −

P(x1,y2) 

O 

 
 
 
 
 
 
 
                (a)    (b) 
   
      Fig. 3 
 
The difference of two vectors AB  and AC  is defined by  
    ).( ACABACAB −+=−  

As seen in fit 4(a), the difference ACAB −  can be interpreted as the main diagonal of a 
parallelogram with sides AB  and - AC . However, as shown, in fig 4b, we can also 
interpret it as the third side of a triangle with sides AB  and AC . In this second 
interpretation, observe that the vector difference ACABCB −=  points toward the 
terminal point of the vector from which we are subtracting the second vector. If  
AB = AC , then ACAB − = 0(zero vector). 
 
 
 
- 
 
   (a)     (b) 
 
     Fig. 4 
Vectors in R2 
To describe a vector analytically, let us consider vectors in two-dimensional coordinate 
plane. The vector with initial point the origin O and terminal point P(x1,y1) in fig 5, is 
called a position vector of the point P and is denoted by 11, yxOP =  
 
 

Fig. 5                      
 
 
 
 
In general, a vector a in R2 is any ordered pair of real numbers the kind  
    21 ,aa=a .  

The numbers 1a  and 2a  are said to be components of the vector a. 
As we shall see in the first example, the vector a is not necessarily a position vector. 
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(x, y) 

(x+4,y+3) 

a
a

(4, 3)

Example 1 
The displacement between the point (x,y) and (x+4,y+3) in fig 5a is written <4,3>. As 
seen in fig. 6b, the position vector of <4,3> is the vector emanating from the origin and 
terminating at the point P(4,3). 
 
 
 
 
 
 
     (a)      (b) 
      Fig. 6 
In R2 addition, subtraction, multiplication of vectors by scalars, and so on, are defined in 
terms of their components. 
Definition 2.1 Let >=< 21 ,aaa  and >=< 21 ,bbb be vectors in R2 then 

i) Addition: >++=<+ 2211 , bababa  
ii) Subtraction: >−−=<− 2211 , bababa  
iii) Equality: ba =  if and only if 2211 , baba ==  
iv) Scalar multiplication: >=< 21 ,kakaka  

Example 2  If >=< 4,1a  and ,3,6 >−=<b  find .32,, bababa +−+ and  
Solution: By definition 1.1 
 >−>=<+−+=<+ 7,534),6(1ba  

 
>−>=<−<+>=<+

>>=<−−−=<−
17,169,188,232

1,734),6(1
ba

ba
 

Definition 2.2 The magnitude, length, or norm of a vector 21 ,aa=a  is denoted by 

a , and defined by  

    2
2

2
1 aa +=a . 

Example 3 If ,2,6 >−=<a then .10240)2(6 22 ==−+=a  

Clearly, 0≥a  for any vector a, and .0 0aa == ifonlyandif Especially we define a 
unit vector as a vector with norm unity. We can obtain a unit vector u in the direction of 

a by multiplying a by .1
a

 i.e. u = a
a
1  is a unit vector in the direction of a.(why?). 

Example 4 Given ,2,6 >−=<a form a unit vector in the direction of a and in the opposite 
direction of a. 
Solution:- We sow in example 3 that the norm of a is 102 . Thus the unit vector u in 
the direction of a is given by 

  
10
1,

10
32,6

102
1

102
1 −

>=−<== au  

and the vector in the opposite direction of a is given by 
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P(x1,y1,z2) 

y 

x

z

O 

  
10
1,

10
3

−=− u  

There are two especial unite vectors in R2 that simplify describing and operating on 
vectors which are 
 >=<>=< 1,00,1 ji and  
any vector >=< 21 , aaa  can be written as a sum: 
 .1,00,1,00,, 21212121 jia aaaaaaaa +>=<+><>=<+>>=<=<  
Example 5  Vector operations using i and j. 
a) <4,7> = 4i + 7j    b) (2i – 5j) + (8i + 13j) = 10i + 8j 
c) 2=+ ji  
d) a = 6i + 4j and b = 9i + 6j are parallel vectors since b=3/2a 
Vectors in R3 
A vector a in R3 is an ordered triple of real numbers >=< 321 ,, aaaa  where 321 ,, aaa are 
the components of the vector. The set of all vectors in R3 will be denoted by the symbol 
R3. The position vector of a point P(x1, y1, z1) in space is the vector OP = < x1, y1, z1> 
whose initial point is the origin O and whose terminal point is P.  
 
 
 
 
 
 
 
 
 
 
 
 
The component definition of addition, subtraction, scalar multiplication and so on are 
natural generalizations of those given for vectors in R2.  
Definition 2.3 Let >=< 321 ,, aaaa  and >=< 321 ,, bbbb  be vectors in R3. Then  

i) Addition:  >+++=<+ 332211 ,, babababa  
ii) Subtraction:  >−−−=<− 332211 ,, babababa  
iii) Scalar multiplication: >=< 321 ,, kakakaka  
iv) Equality: ba =  if and only if .,, 332211 bababa ===  
v) Zero vector: >=< 0,0,00  

vi) Magnitude: 2
3

2
2

2
1 aaa ++=a  

Example 6 Find the vector 21PP  if the points P1 and P2 are given by P1(4,6,-2) and 
P2(1,8,3). 
 
 
Solution: Observe that we may sketch the vectors as in the figure below 

Fig 7 
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P2(1,8,3) 

P1(4,6,-2) 

21PP
O

 
 
 
 
 
 
 
 
Since 21PP = 12 OPOP −  by definition 1.3ii we have 

21PP =<1-4,8-6,3-(-2)>= <-3,2,5>. 

Example 8 Find the norm of a where .
7
6,

7
3,

7
2−

=a  

Solution: By definition 1.3vi  

  .1
49

3694
7
6

7
3

7
2 222

=
++

=⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛ −

=a  

Thus a is a unit vector. 
As we have special unit vectors in R2 (i and j) we also have special unit vectors in R3 

defined as 
i = <1,0,0>  j = <0,1,0> k = <0,0,1> 

so that any vector >=< 321 ,, aaaa may be written as 

 
.

1,0,00,1,00,0,1,,

321

321321

kji
a

aaa
aaaaaa

++=
><+><+><>==<

 

For instance .135713,5,7 kji +−>=−<  

2.2 Dot (Scalar) Product 
In this and the following section, we shall consider two kinds of products between 
vectors that originat in the study of mechanics, electricity and magnetism. The first of 
these products, known as the dot or inner or scalar product, yields a scalar. 
Definition 2.4 Let >=< 321 ,, aaaa and >=< 321 ,, bbbb be two vectors. The dot product 
of a and b is the number a.b defined by 
  332211 bababa ++=⋅ba . 
Observe that if >=< 321 ,, aaaa the norm of a is given by  

aaa ⋅=++= 2
3

2
2

2
1 aaa  or 

   2aaa =⋅ . 
In particular  
  .1=== kji  
Example 1 Find the scalar product of >−=< 4,2,1a and >=< 2,0,3b  
Solution:  From definition 1.10 we see that 
 .11)24()02()31( =×+×−+×=⋅ba  

Fig. 8 
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a

b
θ 

b – a  

The scalar product satisfies many of the laws that hold for real numbers. For example 

 
cbcacbacabacba

bababaabba
⋅+⋅=⋅+⋅+⋅=+⋅
⋅=⋅=⋅⋅=⋅

)()(
)()()( ccc

 

The following theorem gives us the relation between the dot product of two vectors and 
the angle between them. 
Theorem 2.5 If a and b are two nonzero vectors in either R2 or R3 and θ is the angle 
between them, then 
  .0,cos πθθ ≤≤=⋅ wherebaba  

Proof: We will prove the result for R2 while jia 21 aa +=  and jib 21 bb += . The proof 
for vectors in R3 is similar.  

The vectors abba −and,,  may be used to form a triangle as in fig below, then  
by the low of cosines we have 
 
 
 
  
 
  
 

 
 
Fig 9 

 
 
 
We can observe from theorem 1.11 above is that if the two vectors are perpendicular to 
each other i.e θ =90° then 0cos ==⋅ θbaba and conversely. This proves corollary 
1.12 below 
Corollary 2.6 The nonzero vectors a and b are perpendicular to each other if and only if  

0=⋅ ba . 
The other important result that we get from theorem 1.11 is that  

 
ba
ba ⋅

=θcos  

which intern implies, the angle between a and b is uniquely determined as πθ ≤≤0 . 
Example 2  a) The vector 0 is perpendicular to every vector in R2 

b) The vector <3,2> and <-4,6> are perpendicular in R2 

c) The vector <2,-3,1> and <1,1,1> are orthogonal in R3 

Example 3 Determine the angle between the vectors u = i and v = i + k in R3. 
Solution: Since vuvuvu andbetweenangletheisifand θ2,1,1 ===⋅         

we have   
2

1cos =
⋅

=
vu
vuθ  

θcos2222 babaab −+=−                                              
where θ is the angle between a and b. consequently  

[ ]
[ ]

ba

abbaba

⋅=

+=

−−−−+++=

−−+=

)22(
2
1

)()(
2
1
2
1cos

2211

2
22

2
11

2
2

2
1

2
2

2
1

222

baba

bababbaa

θ
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b
θ 

b

a
θ

consequently .45
2

1arccos °==θ  

The Orthogonal Projection of one Vector onto Another                                           
Suppose that two nonzero vectors a and b are positioned as Fig (a) and (b) below and that 
the sun casts a shadow on the line containing a vector parallel to a which we call the 
projection of b onto a and denoted by Pra

b. 
 
                   b 
 

          Pra
b         a                                        Pra

b 

(a)      (b) 
since Pra

b is parallel to a or is 0, it must be a scalar multiple of a. The length of Pra
b is 

evidently ,cosθb  where θ is the angle between a and b ( πθ ≤≤0 ). It follows that 

   

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤<
−

−

≤≤
=

πθπθ

πθθ

2
)cos(

2
0cos

for

for

a
ab

a
ab

Pr b
a  

 
hence irrespective of the angle θ we have 

Pra
b = .cos 2 a

a
ba

a
a

ba
bab

a
ab ⋅

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ⋅
=θ  

Now we are prepared to define the Pra
b. 

Note: 
a
ba

a
a

ba
a

a
baPr b

a

⋅
=

⋅
=

⋅
= 22 . 

Definition 1.13 Let a be a nonzero vector. The projection of vector b on to a (Pra
b) is 

defined by 

Pra
b = .2 a

a
ba ⋅  

Example 4  Let kjibjia 42 ++−=+= and . Find Pra
b. 

Solution: Observe that 2121 ==+−=⋅ aba and , hence 

Pra
b = jijia

a
ba

2
1

2
1)(

)2(
1

22 +=+=
⋅

. 

Direction Cosines: For a nonzero vector kjia 321 aaa ++=  in R3, the angle α,β, and γ 
between a and the unit vectors i, j, and k, respectively, are called dirction angles of a. See Fig 
below, then  
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a

x

y 

z

aia
ia

aia
ia

aia
ia

3

2

1

cos,cos

cos,cos

cos,cos

a

a

a

=
⋅

=

=
⋅

=

=
⋅

=

γγ

ββ

αα

 

 
 
 
 

We say that γβα coscos,cos and are the direction cosines of a. The direction  

cosines of a none zero vector a are simply the components of the unit vector a
a ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ 1
. 

   .coscoscos1 321 kjik
a

j
a

i
a

a
a

γβα ++=++=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ aaa
 

Since the magnitude of a
a ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ 1
 is 1, it follows from the last equation that 

 .1coscoscos 222 =++ γβα  
Example 5   Fine the direction cosines of the vector .452 kjia ++=  

Solution: Form 5345452 222 ==++=a , we see that the direction cosines are  

  .
53

4cos,
53

5cos,
53

2cos === γβα  

Observe in Example 5 above that 

 .1
45
16

45
25

45
4coscoscos 222 =++=++ γβα  

2.3 Cross (Vector) Product 
In this section, we introduce the cross (vector) product of two vectors and its applications. 
The cross product is the other special product of two vectors, which yields vector unlike 
that of the dot (scalar) product. 
Definition 2.7 The cross product ba × of two vectors a = a1i + a2j + a3k and b = b1i + 
b2j + b3k in R3 is defined by 
 kjiba )()()( 122131132332 babababababa −+−+−=× . 
An easy way to remember the last equation is to write it in a determinant form i.e. 

   

321

321

bbb
aaa
kji

ba =×  

α

β
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Then evaluating it by repeating the firs and second columns and multiplying it as follows 

   

21

21

321

321

bb
aa

bbb
aaa

jikji
ba =×  

i.e subtract the sum of the product of the “southwest” diagonals form that of the product 
of the “southeast” diagonals. 
Example 1 Let .432 kjvkjiu +=+−= and  Determine the cross product u×v and v×u 
Solution: From the definition of cross product we have 

 .411]0)2()1(1[)]4(1)0(3[)]1(3)4(2[
410
321 kjiji
kji

vu +−−=−−+−+−−=−=×  

and 

 .411]1)1()2(0[]3)0()1(4[]4)2()3(1[
321
410 kjkkji
kji

uv −+=−−+−+−−=
−

=×  

Notice that the vector u×v and v×u in Example 1 are negatives of each other. This in not 
a coincidence; in fact it directly follows from the definition of cross product of two 
vectors as we may see in the theorem below. The proof of the theorem employs 
properties of determinants which we will discus thoroughly in Chapter 2. 
Theorem 2.8 Let a = a1i + a2j + a3k and b = b1i + b2j + b3k in R3. Then 

a)   a × a = 0    c) a⋅(a × b) =0 
b) a × b = –(b × a)      d) b⋅(a × b) =0 

Proof: a) By definition of cross product we have 

  0
kji

aa ==×

321

321

aaa
aaa  

since a determinant with two equal rows is zero (Notice 0 is vector). 
b) Further, using properties of determinants, we get 

   )(

321

321

321

321 ab
kjikji

ba ×−=−≈=×
aaa
bbb

bbb
aaa  

Since interchanging rows leads us to the negative of the original determinant. 
c) Using the definition of dot product, cross product and determinant we have 

0][)(

321

321

221

321

321321 ==⋅++=×⋅
bbb
aaa
aaa

bbb
aaaaaa
kji

kjibaa  

It can be proved similarly that b⋅(a × b) =0. 
Note: From c) and d) of theorem 1.15 we conclude that the vector a×b is perpendicular to 
both a and b. 
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Example 2 The cross product of any pair of vectors in the i, j, and k can be obtained by 
the circular pattern illustrated in Fig. Below that is 
 
 
 
 
 
  
Example 2 Let a = i – j + 3k and b = 2i – 3j – k. Find a vector perpendicular to a and b.  
Solution: By theorem 1.15 the cross product a×b is one such vector thus the vector that 
is perpendicular to both a and b is given by 

 .578)23()16()91(
132

311 kjikji
kji

ba ++−=++++−=
−

−=×  

Other properties of the cross product that follow readily from the definition of cross 
product are 

ca × b = c(a × b) = a × (cb)  a × (b + c) = (a × b) + (a × c) 
(a + b) × c = (a × c) + (b × c). 

Theorem 2.9 Let a and b be vectors in R3. Then θsinbaba =× , where θ (0≤θ≤π) is 
the angle between a and b. 
Proof: Let a = a1i + a2j + a3k and b = b1i + b2j + b3k using the definition of norm of a 
vector, we get 
 2

1221
2

3113
2

2332
2 )()()( babababababa −+−+−=× ba  

On expanding the squares, this can be rewritten as 

 

θ

θ

θ

θ

222

222

22222

222

222

2
332211

2
3

2
2

2
1

2
3

2
2

2
1

sin

)cos1(

cos

)cos(

)(

)())((

ba

ba

baba

baba

baba

=

−=

−=

−=

⋅−=

++−++++= babababbbaaa

 

since sinθ≥0 for (0≤θ≤π), we can take the square root of each side of the equation and 
obtain  
    θsinbaba =× . 

Corollary 2.10 Two nonzero vectors a and b are parallel if and only if a × b = 0. 
Proof: Left as exercise. 
The result of theorem 1.16 leads to the area of a triangle that is defined by two vectors. 
Consider the triangle whose edges are the vectors u and v. See the fig below. 
 
 
 

i × j = k  j × i = – k  
j × k = i  k × j = – i  
k × i = j  i × k = – j  
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||v||sinθ
|θ

v

||u||

a×b

 
 
 
 
 
 
Example 3 Determine the area of the triangle having vertices A(3,-1,2), B(1,-1,-3), and 
C(4, -3, 1). 
Solution: The points B and C define the following edge vectors, starting from point A. 

  
>−−>=<−<−>−=<

>−−>=<−<−>−−=<

1,2,12,1,31,3,4

5,0,22,1,33,1,1

AC

AB
 

and   .4710
121
502 kji

kji
+−−=

−−
−−=× ACAB  

Thus, the area of the triangle = (1/2)|| ACAB × || 
= (1/2)||-10i –7j + 4k|| 

              .165
2
14710

2
1 222 =++=  

The other important application of the vector (cross) products is in finding the volume of 
a parallelepiped. 
Consider the parallelepiped whose edges are defined by the vectors a, b, and c. See fig 
below. 
 

 
Thus the volume of a parallelepiped with adjacent edges a, b, and c = )( bac ×⋅ . 
The expression )( bac ×⋅  is called the triple scalar product of a, b, and c. It can be 
conveniently written as a determinant. Let 
 kjickjibkjia 321321321 ,, cccbbbaaa ++=++=++=  

Then   

321

321

321

321

321

321

321

321321 )()(
ccc
bbb
aaa

bbb
aaa
ccc

bbb
aaaccc ==⋅++=×⋅
kji

kjibac  

a × b 

a 

c 
h 

y 

 

b 

||v||
Area of triangle = (½) base × height 
    = (½)||u||||v||sinθ 
    = (½) ||u×v|| 
Area of a triangle with edges u and v =(½) ||u×v|| 

The area of the base is twice of the area of 
the triangle defined by vectors a and b. Thus, 
area of base = ||a×b||. Further,  
volume = ||a×b||×h, where h is the height. 
Observe that  
h = ||Pra×b

c|| 

   = )()(
2 ba

ba
bac

×
×

×⋅  

   =
ba
bac

×

×⋅ )(
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P0 

P 

(a, b, c) 

x

y 

z

Thus 
The volume V of a parallelogram with edges a, b, and c 

V=absolute value of  

321

321

321

ccc
bbb
aaa

 

Example 4 Find the volume of the parallelepiped having adjacent edges defined by the points 
A(1,1,3), B(3,7,1), C(-2,3,3), D(1,2,8). 
Solution: The points A, B, C, and D define the following three adjacent edge vectors. 

  

>>=<<−>=<

>−>=<<−>−=<

>−>=<<−>=<

5,1,03,1,18,2,1

0,2,33,1,13,3,2

2,6,23,1,11,7,3

AD

AC

AB

 

The volume of the parallelepiped is thus 

= absolute value of  
510
023
262

−
−

 

= absolute value of (116) =116. 
We have also other triple products for instance )(,)(,)( cbacbaccb ××××⋅× are the 
useful ones. The first is called a triple scalar product and the last two are called triple 
vector products, since the products are vectors. See Exercise 1 for important relations 
due to triple products. 

2.4 Lines and Planes in R3 

2.4.1 Equations of Lines in Space 
Consider a line through the point ),,( 0000 zyxP in the direction defined by the vector 

>< cba ,, . See the fig below. Let ),,( zyxP be any other point on the line. We get 

   >−−−=< 0000 ,, zzyyxxPP   
 
 
  
 
 
 
 
 
 
 
 

 
 

The vector PP0  and <a, b, c> are parallel. Thus there exists a scalar t such that  
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PP0 = t <a, b, c> or 

><>=−−−< cbatzzyyxx ,,,, 000    (1) 

This is called the vector equation of the line. Comparing the components of the vectors on 
the left and right of this equation gives 

  tczztbyytaxx =−=−=− 000 ,,  
Rearranging these equations as follows gives the parametric equations of a line in R3. 

∞<<−∞+=+=+= ttczztbyytaxx 000 ,,   (2) 

in this last equation we get the points on the line as t varies. 

Example 1 Find a vector equation for the line through (1,2,5) in the direction of <4,3,2>. 
Give also the parametric equation of the line. Determine any two points on the line. 

Solution: Let <a,b,c>=<4, 3, 1> and )5,2,1(),,( 000 =zyx , then from equation (1) we can 
write the vector equation of the line as 

   .1,3,45,2,1 ><>=−−−< tzyx  
And from equation (2) we give the parametric equation of the line by 

  .532,41 ∞<<−∞+=+=+= ttztytx  
To find to points on the line we give t two arbitrary values, for instance t =1leads to the point 
(5,5,6), and t = –1 leads to the point (–3, –1, 4). 

Example 2 Find the parametric equation of the line through the points (-1, 2, 6) and (1, 5, 4). 

Solution: Let ).6,2,1(),,( 000 −=zyx  The direction of the line is given by the vector 

 .2,3,26,2,14,5,1,, >−>=<−<−>>=<< cba  
Consequently the parametric equations of the line are given by 

 .26,32,21 ∞<<−∞−=+=+−= ttztytx  
Symmetric Equations of a Line: From equation (2) we can clear the parameter t by writing 
it as 

   
c

zz
b

yy
a

xx
t 000 −

=
−

=
−

=  

provided that the three numbers a, b, and c are nonzero. The resulting equations 

   
c

zz
b

yy
a

xx 000 −
=

−
=

−
     

are said to be symmetric equations for the line through P0 and P. 

Example 3 find the symmetric equations for the line through (4,10, -6) and (7,9,2). 

Solution: First let us find the reference vector as below 

 .8,1,32,9,76,10,4,, >−−>=<<−>−>=<< cba   
Then if we let )2,9,7(),,( 000 =zyx the symmetric equation of the line is given by 

  .
8
2

1
9

3
7

−
−

=
−

=
−
− zyx  
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(a, b, c) 

y 

x 

z

Note: If one of the numbers a, b, or c is zero in (2), we use the remaining two equations to 
eliminate the parameter t. For example if a = 0, b ≠ 0, c ≠ 0, then (2) yields the symmetric 
equations for the line to be 

  
c

zz
b

yy
xx 00

0 ,
−

=
−

= . 

 

2.4.2 Equations of Planes in R3 
Let ),,( 0000 zyxP be a point in a plane. Let <a, b, c> be a vector perpendicular to the plane, 
called a normal to the plane. These two quantities, namely a point in a plane and a normal 
vector to the plane characterize the plane. There is only one plane through a given point and 
having a given normal. We will now drive the equation of a plane passing through the point 

),,( 0000 zyxP  and having normal <a, b, c>. Let P(x, y, z) be any arbitrary point in the plane. 
We get  

          z 
 
 
 
 
PP 
 
 

 
 
 
 
 
 
Specifically the last equation yields the point-normal form of the equation of the plane 

0)()()( 000 =−+−+− zzcyybxxa     (3) 

and expanding the last equation and putting 000 czbyaxd ++= we obtain the general 
form of the equation of the plane 

dcybyax =++      (4) 
Observe that the components of <a, b, c> appear as coefficients in (3) and (9), ane the 
coordinates of the points ),,( 0000 zyxP in the plane appear inside the parenthesis in (3). 
Example 1 Find the point-normal and general forms of the equation of the plane passing 
through the point (1,2,3) and having normal <-1,4,6>. 
Solution: Let )3,2,1(),,( 000 =zyx and .6,4,1,, >−>=<< cba  Then the point normal form 
equation of the plane is given by 

– (x –1) + 4(y –2) + 6(z –3) =0 
multiplying and simplifying the last equation we get the general form 

• x + 4y + 6z = 25. 
Example 2 Determine the equation of the plane through the three points P(2,-1,1),           
Q(-1,1,3) and R(2,0,-3). 

PP0

 
>−−−=<
><−>=<

000

0000

,,
,,,,
zzyyxx
zyxzyxPP

 

The vector PP0  lies in the plane. Thus the vector 

<a, b, c> and PP0 are orthogonal. Their dot 
product is zero. This observation leads to a 
vector equation of the plane 
 .0,, 0 =⋅>< PPcba  
or  .0,,,, 000 >=−−−<⋅>< zzyyxxcba  
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c b

a a b

c 
d

x

y 

z

Solution: The vectors PRandPQ  lie in the plane. Thus PRPQ × will be normal to 
the plane. So since 

 
>−>=<−<−>−=<

>−>=<−<−>−=<

4,1,01,1,23,0,2

2,2,31,1,213,1

PQ

PQ
 

PRPQ × = –10i – 12j – 3k 
finally putting >−−−>=<<−= 3,12,10,,)1,1,2(),,( 000 cbaandzyx  we give the point  
normal equation by 
  0)1(3)1(12)2(10 =−−+−−− zyx   
or the general equation by 
  .1131210 −=−−− zyx  
Example 3 The normal vector to the plane 81043 =+− zyx , can be given by taking the 
coefficients of x, y, and z and forming a vector i.e 3i – 4j + 10k is the normal vector to 
our plane. 
Example 4 ( Graph of a plane) 
Graph the equation .12632 =++ zyx  
Solution: setting   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Exercise 1 

1. Let .5224 jibjia +−=+= and  Graph a + b and a – b. 
2. Use the given figures to prove the given result 

i)  a + b + c = 0     ii) a + b + c + d = 0 

 
 
 

 
3. Sketch position vectors for a, b, 2a, -3b, a +b, and a-b. 

i) a = <2,3,4>  b = <1,-2,2> 
ii) a = –i + 2j +3k  b = -2j + k 

4. Determine the scalar c so that the vectors kjibkjia 42332 ++=+−= andc are 
orthogonal. 

y = 0, z = 0 gives x = 6 
x = 0, z = 0 gives y = 4 
x = 0, y = 0 gives z = 2 
 
The x, y, and z-intercepts are, 6, 4, and 2 
respectively. As shown in the figure to the 
left. We use the points (6, 0, 0), (0, 6, 0) and 
(0, 0, 3) to draw the graph of the plane in the 
first octant. 
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5. Verify the vector a
a

babc 2

⋅
−=  is orthogonal to the vector a. 

6. Determine a scalar c so that the angle between .45°+=+= isandc jibjia  
7. Find the angle θ between .22,3 kibkia +=−=  
8. Find the direction cosines of the vector .32 kjib ++=  
9. Find >=< 1,, 11 yxv that is orthogonal to both .2,2,31,1,3 >−=<>−=< aa and  

10. Let .24,323 kjibkjia +−=−+=  Pra
b. 

11. prove              

2222 22)

)

)

bababa

baba

baba

+=−++

+≤+

≤⋅

c

b

a

 

12. Find the area of the triangle with vertices A(1,2,1), B(-3,4,6), and C(1,8,3). 
13. Find the volume and surface area of the parallelepiped having adjacent edges defined 

by A(1,2,5), B(4,8,1), C(-3,2,3), D(0,3,9). 
14. Show that (a + b)×(a – b) 
15. Let a, b, and c be vectors in R3. Prove that .)()( cbacba ⋅×=×⋅  
16. Let a, b, and c be vectors in R3. Prove that .)()()( cbabcacba ⋅−⋅=××  
17. Let a, b, and c be vectors in R3. Prove that 0)()()( =××+××××× bacacbcba  
18. Find parametric equations and symmetric equations for the line through the points      

(5, 3, 1) and (2, 1, 1). 
19. Fine the equation of the line through the point (1, 2, -4), parallel to the line x = 4 +2t,   

y = -1 + 3t, z = 2 + t, where -∞<t<∞ 
20. Find the equation of the line through the point (2,-3,1) in a direction orthogonal to the 

line 
5

2
2

1
3

1 +
=

−
=

+ zyx
 

21. Show that there are many planes that contain the three points (3, -5, 5), (-1, 1, 3) and  
(5, -8, 6). Interpret your conclusion geometrically. 

22. Find an equation for the line through the point (4, -1, 5), in the direction perpendicular 
to the line x = 1 – t, y = 3 + 2t, z = 5 – 4t, where –∞  <t< ∞. 

23. Show that the line x = 1+t, y = 14 – t, z = 2 – t, where –∞  <t< ∞, lies in the plane 2x –y 
+3z + 6 = 0. 

24. Prove that the line x = 4 +2t, y = 5 + t, z = 7 + 2t, where –∞  <t< ∞, never intersects the 
plane 3x + 2y – 4z + 7 = 0. 

25. Find an equation of the line through the point (5, -1, 2) in a direction perpendicular to 
the line x = 5 –2t, y = 2 + 3t, z = 2t, where –∞  <t< ∞. 

26. Find the line of intersection of the two planes       
  x – 4y + 2z + 7 = 0,         
 and  3x + 3y –z – 2 = 0.    
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3 Limit and Continuity 
3.1  Definition of Limits 

Until know we have been evaluating the limit of a function by using its intuitive 
definition. That is we have said that limit of )(xf as x approaches to a is L and write  

Lxf
ax

=
→

)(lim   

if we can make )(xf close enough to L by choosing x close enough to a but distinct from 
a. Although this intuitive definition is sufficient for solving limit problems it is not prices 
enough. In this section we see the formal definition of limit, which we call the δε −  
definition of limit. 
Definition 3.1 (Formal definition of limit) 
The limit of )(xf as x approach a is L, written 
   Lxf

ax
=

→
)(lim  

if every  ε > 0, there exists a δ > 0 such that |f(x) - L| < ε whenever 0 < |x - a| < δ.  
In Definition 3.1 above we should not that 

I. The absolute value symbol is read as “ the distance between” for instance |x - a| is the 
distance between x and a. 

II. Notice that |x - a| >0. In other words x is not equal to a. 
So with this in mind we can read the definition as: 

“ The distance between )(xf and L can be made smaller than any positive number ε, 
 whenever the distance between x and a is less than some number δ and x does not 
equal a.” Fig 3.1 below represents this idea pictorially. 

                                    y   
 
 

L+ε 
          L 
 L-ε       

                                                                                      x 

             

Fig 3.1 
If we wish to use a form of Definition 3.1 that does not contain absolute value symbols 
we can have the following alternative definition of limit. 
Definition 3.2 Lxf

ax
=

→
)(lim  if and only if for every ε>0, there is a δ>0 such that if x is in the 

open interval (a – δ, a +δ) and x ≠ a then f(x) is in the open interval (L –ε, L + ε). 
Using either of the definitions of limit given above we can prove the following theorem. 
Theorem 3.3 If Lxf

ax
=

→
)(lim  and Mxf

ax
=

→
)(lim  then L=M. 

The above theorem tells us that if a limit of a function f(x) at a exists then it must be 
unique. 

a-δ  a  a-δ
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3.2  Examples on limit 
Even if it is very difficult to us the formal definition of limit to handle all limit problems 
let us see how we can use it for evaluating same important limits that may help us in 
developing rules by the way of which we can evaluate limits with out using the formal 
definition. 
Example 1 Assume that 375lim

2
=−

→
x

x
. By using properties of inequalities, determine a  

δ> 0 such that  
if .01.03)75(20 <−−<−< xthenx δ  

Solution: By considering 01.03)75( <−−x  we can see that  

   

002.02

01.025

01.010501.03)75(

<−⇔

<−⇔

<−⇔<−−

x

x

xx

 

so now it is clear that if we choose δ = 0.002 statement holds but to check our result holds 
we proceed as follows: 

   

01.03)75(

01.0105

01.025

5/01.02

002.0220

<−−⇒

<−⇒

<−⇒

<−⇒

<−<−<

x

x

x

x

xthenxif δ

  

Thus we have shown that the choice of δ = 0.002 satisfies the statement  
if .01.03)75(20 <−−<−< xthenx δ  

This example is for the specific ε = 0.01. The general case can be seen as follows. 
Example 2 Show that   
    375lim

2
=−

→
x

x
 

Solution: 
We need to show that given ε > 0 then there exists δ > 0 such that  

if εδ <−−<−< 3)75(20 xthenx  

To choose an appropriate δ we start with ε<−− 3)75( x  then we have  

    

5
2

25105
ε

εε

<−⇒

<−⇒<−

x

xx
 

Hence, we let  

 
this proves that 375lim

2
=−

→
x

x
. 

Example 3  Prove that .  
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Solution: 
Begin by letting ε > 0 be given. Find δ > 0 so that if ,                           then                                                
 , i.e.,                   , i.e.,             .  But this trivial inequality is always true, no matter what  
 
value is chosen for . For example,         will work. Thus, if                          , then it follows 

that . This completes the proof. 
A similar proof as example 2 shows us that for any number a and k 

kk
ax

=
→

lim        (1) 

Example 4 Prove that kakx
ax

=
→

lim  for any real number k. 

Solution: from  (1) it is clear that if c = 0 
  ...000limlim

0
akakx

xax
====

→→
 

If k≠0, letting ε>0 we must find a δ>0 so that 
  εδ <−⇒<−< kakxax0  
since  

   
k

ax

axkkakx
ε

εε

<−⇒

<−⇒<−
 

choose .
k
εδ =  

Example 5 Prove that .  

Solution: Begin by letting be given. Find (which depends on ) so that if 

, then . Begin with and “solve for” |x-1| . 
Then,  

iff  

iff  

iff  

iff .  

We will now “replace” the term |x+1| with an appropriate constant and keep the term |x-1| , 

since this is the term we wish to “solve for”. To do this, we will arbitrarily assume that 
(This is a valid assumption to make since, in general, once we find a that works, all smaller 
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values of also work.) . Then implies that -1 < x-1 < 1 and 0 < x < 2 so that 1 
< |x+1| < 3 (Make sure that you understand this step before proceeding.). It follows that 
(Always make this “replacement” between your last expression on the left and . This 
guarantees the logic of the proof.)  

 

iff  

iff .  

Now choose (This guarantees that both assumptions made about in the 

course of this proof are taken into account simultaneously.). Thus, if , it 

follows that . This completes the proof. 

Example 6 Prove that .  

Solution: Begin by letting be given. Find (which depends on ) so that if 

, then . Begin with and “solve for” | x - 3 | . 
Then,  

iff  

iff  

iff  

iff  

iff  
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iff  

iff  

iff .  

We will now “replace” the term |x+3| with an appropriate constant and keep the term |x-3| , 

since this is the term we wish to “solve for”. To do this, we will arbitrarily assume that 
(This is a valid assumption to make since, in general, once we find a that works, all smaller 

values of also work.) . Then implies that -1 < x-3 < 1 and 2 < x < 4 so that 5 

< |x+3| < 7 and (Make sure that you understand this step before 
proceeding.). It follows that (Always make this “replacement” between your last expression 
on the left and . This guarantees the logic of the proof.)  

 

iff  

iff  

iff .  

Now choose (This guarantees that both assumptions made about in the 

course of this proof are taken into account simultaneously.). Thus, if , it 

follows that . This completes the proof. 

Example 7  Prove that . 
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Solution: Begin by letting be given. Find (which depends on ) so that if 

, then . Begin with and “solve for” | x - 9 | . 
Then,  

iff  

iff  

(At this point, we need to figure out a way to make | x-9 | “appear” in our computations. 
Appropriate use of the conjugate will suffice.)  

iff  

(Recall that .)  

iff  

iff .  

iff .  

We will now “replace” the term with an appropriate constant and keep the term |x-9| 
, since this is the term we wish to “solve for”. To do this, we will arbitrarily assume that 

(This is a valid assumption to make since, in general, once we find a that works, all 

smaller values of also work.) . Then implies that -1 < x-9 < 1 and 8 < x < 10 

so that and (Make sure 
that you understand this step before proceeding.). It follows that (Always make this 
“replacement” between your last expression on the left and . This guarantees the logic of the 
proof.)  
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iff  

iff .  

Now choose (This guarantees that both assumptions made about in 

the course of this proof are taken into account simultaneously.). Thus, if , it 

follows that . This completes the proof. 
Example 8:  

 
Solution: 
We need to show that given ε > 0 then there exists δ > 0 such that  

implies  

Looking for δ:  

 

Hence, we let  

 
Negation of the Existence of a Limit 
Next we present an example of a function that does not have a limit at a certain point. For 
a function f not to have a limit at a means that for every real number L, the statement “L 
is the limit of f at a” is false. What does it mean for that statement to be false? By 
Definition 3.1, “L is the limit of f at a” means that  

For every ε>0 there is a number δ> 0 such that  
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if   0<|x – a|<δ,  then   |f(x) – L|<ε   
for this statement to be false, there must be some ε>0 such that for ever δ> 0 it is false that  

if   0<|x – a|<δ,  then   | f(x) – L|<ε                  (2) 
But to say that (2) is false is the same as to say that there must be a number x such that  

0<|x – a|<δ  and  | f(x) – L| ≥ ε   
Thus to say that the statement Lxf

ax
=

→
)(lim  is false is the same as to say that there is 

some ε>0 such that for ever δ> 0 there is a number x satisfying  
0<|x – a|<δ  and  | f(x) – L| ≥ ε.  

Example 8 Let f be defined by 

   
⎩
⎨
⎧

≤−
>

=
01
0

)(
2

xfor
xforx

xf  

Solution: Let L be any number. We will prove tht the statement “L is the limit of f at 0” is 
false by letting ε=1/2 and showing that for any δ>0 there is an x satisfying  
0<|x – a|<δ  and  |f(x) – L| ≥½ = ε   
Let δ be any positive number. If L ≤  – ½ , then we let x =δ/2 and note that f(x) = x2 so that  

  εδδ
=>+≥−=−

2
1

2
1

44
)(

22

LLxf   

If  L ≥ – ½, then we let x = – δ/2 and note that f(x) = -1, so that 

  ε==−≥+−=−−=−
2
1

2
11111)( LLLxf  

In either case we have shown that for any δ>0 there is an x satisfying  
0<|x – a|<δ  and  |f(x) – L| ≥½ = ε   
There for f has no limit at 0. 
Class work  
Using the ε-δ definition of limit, prove that 
1. 112lim

1
=−

→
x

x
  2.  11lim

2
=−

→
x

x
 3. 4lim 2

2
=

→
x

x
     4. 312lim

1
≠−

→
x

x
 

3.3  One-Sided Limits 
The notion of limit discussed in the preceding sections can be extended to one-sided limit 
as we can see from the definition below. 
Definition 3.4 a) A number L is the right-hand limit of f at a denoted by Lxf

ax
=

+→
)(lim  

if for every ε > 0 there is a number δ>0 such that  
   εδ <−<−< Lxfthenaxif )(,0  
b) A number L is the left-hand limit of f at a denoted by Lxf

ax
=

−→
)(lim  if for every ε > 0 

there is a number δ>0 such that  
   εδ <−<−<− Lxfthenaxif )(,0 . 

Example 9 Show that 01lim
1

=−
+→

x
x

 

Solution: Let ε > 0 be given we need to show there is a δ>0 such that  
   εδ <−−<−< 01,10 xthenxif  
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form ε<−1x   sequaring both sides we get 210 ε<−< x , hence choose .2εδ =  
Then  

   .101,10 εδδ =<−=−−<−< xxthenxif  

Below we give a theorem that relates one sided limit with a general limit the student can 
see Robert Ellis and Denny Gulick for the proof of the theorem.  
Theorem 3.5 )(lim xf

ax→
 exists and is equal to L if and only if )(lim xf

ax −→
 and )(lim xf

ax +→
both 

exist and both are equal to L. 
Example 2 Observe that in Example 1 even if the right hand side of f at 1 exists since the 
left side limit of f at 1 does not exist, as the function is not defined for x < 1 then 

1lim
1

−
→

x
x

 does not exist. 

3.4  Infinite Limits and Infinite Limits at infinity  
According to Definition 3.1 if a function f  has a limit L at a then L is a real number, so if 
the value of a function f becomes larger and larger in absolute value as x approach a from 
the right or from the left of a then f has no limit a. Now we introduce a definition that 
addresses such a case. 
Infinite Limits 
Definition 3.6 Let f be defined on some open interval (a, c). 

a. If 0, >∃∀ δN   such that  

∞=
><−<

+→
)(lim

)(0
xfthen

Nxfthenaxif

ax

δ
 

b. If 0, >∃∀ δN   such that  

−∞=
<<−<

+→
)(lim

)(0
xfthen

Nxfthenaxif

ax

δ
 

c. In either case (a) or (b) the vertical line x = a is called a vertical asymptote of the    
graph of f, and we say that f has an infinite right-hand limit at a. 

There are analogous definitions for the limits 
 −∞=∞=

−− →→
)(lim)(lim xfandxf

axax
 

Note if  ∞==
−+ →→

)(lim)(lim xfxf
axax

then we right simply ∞=
→

)(lim xf
ax

for the common 

expression and say that the limit of f(x) as x approaches a is ∞ and that f has an infinit 
limit at a. 
Example 10 Show that ./1lim 2 ∞=

→
x

ax
 Show also that the line x = 0 is a vertical 

asymptote of the graph of 1/x. 
Solution: Observe that for any N>0, 

  N
x

then
N

xif ><< 2

1,10  

Thus ,/1lim 2 ∞=
+→

x
ax

and thus the line x = 0 is a vertical asymptote of the gragh of 1/x2.  
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Once more for any N>0 

  N
x

thenx
N

if ><<− 2

1,01
 

Thus ,/1lim 2 ∞=
−→

x
ax

again x = 0 is a vertical asymptote of the gragh of 1/x2. 

Finaly since ,/1lim/1lim 22 xx
axax +− →→

=∞= ./1lim 2 ∞=
→

x
ax

 

Limits at Infinity 
Until now the limits we have seen have been limits of a function f at a number a. Now we 
consider the limit of f as x becomes larger and larger in absolute value.  
Definition 3.7 a) Lxf

x
=

∞→
)(lim  if for every ε>0 there is a number M such that  

    ε<−> LxfthenMxif )(,  

b) Lxf
x

=
−∞→

)(lim  if for every ε>0 there is a number M such that  

    ε<−< LxfthenMxif )(,  

c) If either Lxf
x

=
∞→

)(lim  or Lxf
x

=
−∞→

)(lim , then we call the horizontal line y = L a  

horizontal asymptote of the graph of f. 

Example 11 Show that .0/1lim0/1lim 22 ==
−∞→∞→

xandx
xx

 

Solution: Let ε>0. To show that 0/1lim 2 =
∞→

x
x

 we must find an M such that  

   ε<==−> 222

1101,
xxx

thenMxif  

But then 

if ε
ε

<> 2

1,1
x

thenx  

Therefore we let ε1=M and conclude that 0/1lim 2 =
∞→

x
x

. To show that 0/1lim 2 =
−∞→

x
x

 

We simply choose ε1−=M Then M<0, and thus  

   ε=<=−< 222

1101,
Mxx

thenMxif  

this proves that 0/1lim 2 =
−∞→

x
x

. 

Note here that y = 0 is the horizontal asymptote of the graph of 1/x2. 
Infinite Limits at infinity 
We now see the last possible formal definiton of limit that is not considered yet. 
Defintion 3.8  ∞=

∞→
)(lim xf

x
if for any real number N there is some number M such that  

  .)(, NxfthenMxif >>  
Note the definition of 

−∞=∞=−∞=
∞−→∞−→∞→

)(lim,)(lim,)(lim xfandxfxf
xxx

 are 

completely analogues. 
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Example 12 Show that .lim 3 ∞=
∞→

x
x

 

Solution: We use the fact that xx >3  for .1>x  For any N, choose M so that M>1 and M 
> N. Then it follows that 
  NMxxthenMxif >>>> 3,  
therefore by Definition 3.8 
   .lim 3 ∞=

∞→
x

x
 

Similarly, we conclude that for any positive integer n, 
   .lim ∞=

∞→

n

x
x  

3.5  Limit Theorems 
Even if we have developed important techniques of solving limit problems by using the 
formal definition, I hope by now we have realized that it is not that easy to use this 
definition to solve each and every problem. Nevertheless the student had encountered in 
his or her earlier studies of calculus rather easy ways of evaluating limits by the help of 
different rules. Here we state and prove some of them by using Definition 3.1 and use 
them to evaluate more complex limit cases. 
Theorem 3.9 Assume that )(lim)(lim xgandxf

axax →→
and c is a constant then 

1. )(lim)(lim)]()([lim xgxfxgxf
axaxax →→→

+=+  

2. )(lim)(lim xfcxcf
axax →→

=  

3. )(lim)(lim)()(lim xgxfxgxf
axaxax →→→

⋅=  

4. 
)(
)(lim0)(lim

xg
xfandxgif

axax →→
≠ exists then .

)(lim

)(lim

)(
)(lim

xg

xf

xg
xf

ax

ax

ax
→

→

→
=  

Proof: Here we proof (1). Statement (2), (3), and (4) are left as exercise.                                                         
Let MxgandLxf

axax
==

→→
)(lim)(lim we need to show for every ε>0 there is some δ>0 such 

that if .)()()(,0 εδ <+−+<−< MLxgxfthenax Observe that Lxf
ax

=
→

)(lim iff for 

every ε/2 >0 there is a δ1>0 such that .2/)(,0 1 εδ <−<−< Lxfthenaxif  

Similarly Mxg
ax

=
→

)(lim  iff for every ε/2 >0 there is a δ2>0 such that  

.2/)(,0 2 εδ <−<−< Lxgthenaxif  
Let δ = min {δ1, δ2} then we can see that 

.2/2/)()()()()(,0 εεεδ =+<−+−<+−+<−< MxgLxfMLxgxfthenaxif  

Thus .)(lim)(lim)]()([lim MLxgxfxgxf
axaxax

+=+=+
→→→

 

In addition to these rules you have also seen that for instance if f is a polynomial or a rational 
function and a is in the domain of f, then 

)()(lim afxf
ax

=
→

  etc 

Now let as quickly go through some important limit finding techniques that would 
require a little bit of caution before applying the rules in Theorem 3.9. 
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Example 13 Find 
2
4lim

2

2 −
−

→ x
x

x
 

Solution: Direct substitution of 2 in 
2
42

−
−

x
x implies that we have 0/0 which is 

indeterminate thus we cannot use Theorem 3.9 (4) but for x≠0 simplification of the 
rational expression would lead us to 

   2
2

)2)(2(
2
42

+=
−

+−
=

−
− x

x
xx

x
x  

thus  

   .4)2(lim
2
4lim

2

2

2
=+=

−
−

→→
x

x
x

xx
 

Example 14 Find 
11

lim
2

2

0 −+→ x
x

x
  

Solution: Again here we cannot use Theorem 3.9 (4), as we get from direct substitution 
the indeterminate 0/0. But for x≠0 rationalizing the denominator we have: 

   

( ) .211lim

11lim
1)1(

11lim

11

11

11
lim

11
lim

2

0

2

22

02

22

0

2

2

2

2

02

2

0

=++=

++
=

−+
++

=

++

++

−+
=

−+

→

→→

→→

x

x
xx

x
xx

x

x

x

x

x

x

x

xx

xx

 

 
Example 15 Find xx

x 0
lim

→
 

Solution: Observe that 

  
⎩
⎨
⎧

<−
≥

=
0
0

2

2

xifx
xifx

xx  

Since  02 >= xforxxx , we have  

   0limlim 2

00
==

++ →→
xxx

xx
 

and also since ,02 <−= xforxxx  we have 

   0limlim 2

00
=−=

−− →→
xxx

xx
 

therefore we conclude that 
xx

x 0
lim

→
=0. 

Example 16 Prove that 
1
1lim

1 +
+

−→ x
x

x
does not exist 

Solution:

11lim
)1(

1lim
1
1lim11lim

1
1lim

1
1lim

111111
−=−=

+−
+

=
+
+

==
+
+

=
+
+

−−−+++ −→−→−→−→−→−→ xxxxxx x
x

x
xand

x
x

x
x  
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Consequently  

  
1
1lim

1 +
+

+−→ x
x

x
≠

1
1lim

1 +
+

−−→ x
x

x
 

Thus 
1
1lim

1 +
+

−→ x
x

x
does not exist. 

Example 17 Find 
1

2lim
1

2lim 2

2

2

2

−
−

−
−

−∞→∞→ x
xxand

x
xx

xx
 

Solution: Deveiding the numerator and the denominator of 
1

2
2

2

−
−

x
xx by x2  in the limit we 

have 

  2
/11

2/1lim
1

2lim 2

2

−=
−

−
=

−
−

∞→∞→ x
x

x
xx

xx
 

 
similarly  

  .2
/11

2/1lim
1

2lim 2

2

−=
−

−
=

−
−

−∞→−∞→ x
x

x
xx

xx
 

Observe here that y = -2 is the horizontal asymptote of the graph of f(x) =
1

2
2

2

−
−

x
xx . 

Example 18 Let f(x) =
1

2
2

2

−
−

x
xx . Find all vertical asymptotes of the graph of f. 

Solution: Since f is not defined at x =1 and x = –1 they are the possible vertical 
asymptotes but to confirm our claim we use limit: 
Since   

 
∞=

−
−

+
=

−
−

−∞=
−

−
+

=
−

−

++

++

−→−→

→→

1
21

1
lim

1
2lim

1
21

1
lim

1
2lim

12

2

1

12

2

1

x
x

x
x

x
xx

and
x

x
x

x
x

xx

xx

xx
  

it follows that x =1 and x = –1 are the vertical asymptotes of the graph of f. 
The next theorems give two additional properties of limits. For their proofs the student may 

refer any major calculus books. 

Theorem 3.10 If )()( xgxf ≤  for all x in an open interval that contains a (except 
possibly at a) and the limits of f and g both exist as x approaches a, then  
    ).(lim)(lim xgxf

axax →→
≤  

Theorem 3.11 (The Squeezing Theorem) If )()()( xhxgxf ≤≤  for all x in an a open 
interval that contains a (except a possibly at a) and  
    Lxhxf

axax
==

→→
)(lim)(lim  

then  
    .)(lim Lxg

ax
=

→
 

I don’t think the student is new for these theorems and for the special limit that is the 
consequence of especially the Squeezing Theorem. i.e. 
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    .1sinlim
0

=
→ x

x
x

 

Example 19 Find 
x

x
x

1sinlim 2

0→
 

Solution: Since 11sin1 ≤≤−
x

 , ∀x ≠ 0, we have 

222 1sin x
x

xx ≤≤−   ∀x ≠ 0 

Moreover ,0lim0lim 2

0

2

0
==−

→→
xandx

xx
 thus by the squeezing theorem we have 

x
x

x

1sinlim 2

0→
= 0. 

Example 20 Find 
1

lim
24

+
−

∞→ x
xx

x
 

Solution: Simplifying 
1

24

+
−

x
xx  we can evaluate the limit as below 

  
.)1(lim

1
)1)(1(lim

1
)1(lim

1
lim

2

22224

∞=−=
+

+−
=

+
−

=
+
−

∞→

∞→∞→∞→

xx
x

xxx
x
xx

x
xx

x

xxx  

Class work 
Evaluate each of the following limit as a real number, ∞, – ∞, if it exists. 

1. 
1

2lim
2

1 +
−−

−→ x
xx

x
    2. 

x
x

x

2sinlim
0→

   3. 
x

xx
x

−−+
−→

11lim
3

 

4.  20

cos1lim
x

x
x

−
→

  5.  
⎩
⎨
⎧

>−
<

=
→ 1)2(

1
)()(lim 2

3

1 xifx
xifx

xfwherexf
x

 

3.6 Continuity of a Function and the Intermediate Value Theorem 
Definition 3.11 A function f is continuous at a number a in its domain if 
    )()(lim afxf

ax
=

→
 

f is said to be discontinuous at a if f is not continuous at a. 
Notice that definition 3.11 implicitly requires three things if f is continuous at a: 

1. f(a) is defined (that is, a is in the domain of f) 
2. )(lim xf

ax→
 exists (so f must be defined on an open interval that contains a). 

3. )()(lim afxf
ax

=
→

 

Example 21 Let 
1

2lim)(
2

1 +
−−

=
−→ x

xxxf
x

. Determine the number at which f is not 

discontinuous. 
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Solution: Notice that f is a rational function. Since the denominator of f is 0 for x = -1, f 
is defined for all x except at –1. Thus f is discontinuous only at x = -1 else where it is 
continuous in its’ domain. 
Example 22 If we redefine the function f in Example 21 as: 

    
⎪⎩

⎪
⎨
⎧

−=−

−≠
+

−−
=

13

1
1

2
)(

2

xif

xif
x

xx
xf  

then since  

  3
1

)1)(2(lim
1

2lim)(lim
1

2

11
−=

+
+−

=
+

−−
=

−→−→−→ x
xx

x
xxxf

xxx
 

and hence )1(3)(lim
1

−=−=
−→

fxf
x

 

f is continuous. 
Notice that we are able to make f in Example 21 to be continuous by redefining it at –1 as 
in Example 22. Such discontinuity points like –1 in our example are called removable 
discontinuities because we can remove the discontinuity of the function by redefining the 
function just at the discontinuity point. 

Example 23 Let 
⎩
⎨
⎧

>
≤

==
00
01

)(1)( 2 xif
xif

xgand
x

xf  then we can see that, f is not 

defined at 0 and ,)(lim
0

∞=
→

xf
x

g is defined at 0 but )(lim
0

xg
x→

does not exist as 1)(lim
0

=
−→

xg
x

 

and .0)(lim
0

=
+→

xg
x

Thus both functions are not continuous at 0. We say we have infinite 

discontinuity at 0 in case of f while we say we have jump discontinuity at 0 in case of g.  
Clearly combinations of continuous functions follow immediately from the corresponding 

results for limits. 

Theorem 3.12 If f and g are continuous at a and c is a constant, than the following 
functions are also continuous at a. 
i. f + g  ii. f – g  iii. cf   iv. fg  v. f/g if g(a) ≠ 0.   
So using theorem 3.12 we can show that every polynomial function is continuous over R 
every rational function is continuous everywhere except at numbers where the 
denominator is 0. 

Another way of combining continuous functions f and g to get a new continuous function 
is to form the composite function .gf o  This fact is a consequence of the following theorem. 

Theorem 3.13 If f is continuous at b and bxg
ax

=
→

)(lim  then  

   ( ))(lim)())((lim xgfbfxgf
axax →→

==  

The following theorem tells us that the composition of two continuous functions at a 
given number is continuous. 
Theorem 3.14 If g is continuous at a and f is continuous at g(a), then ))(()( xgfxgf =o  
is continuous at a. 
Class work 
Where are the following functions continuous 
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a)  xxf =)(    b) 
23

1)(
2 −+

=
x

xh  

One-Sided Continuity 
Definition 3.15 A function f is continuous from the right at a point a in its domain if  
     )()(lim afxf

ax
=

+→
 

A function f is continuous from the left at a point a in its domain if  
     ).()(lim afxf

ax
=

−→
 

Example 24 the step function 
⎩
⎨
⎧

>
≤

=
00
01

)(
xif
xif

xg  is continuous from the left at 0 

Since )0(1)(lim
0

gxg
x

==
−→

but it is not continuous from the right at 0 as )0()(lim
0

gxg
x

≠
+→

 

verify. 
Continuity on interval 
Definition 3.16 a) A function is continuous on (a,b), if it is continuous at every point in  

(a,b). 
b. A function is continuous on [a, b] if it is continuous on (a,b) and is also continuous 

from the right at a and continuous from the left at b. 
Class Work  
Let 21)( xxf −= .Show that f is continuous on [-1, 1]. 
An important property of continuous functions is expressed by the following theorem. 

Theorem 3.17 (The Intermediate Value Theorem) 
Suppose that f is continuous on the closed interval [a, b] and let N be any number strictly 
between f(a) and f(b). Then there exists a number c in (a, b) such that f(c) = N.  
Example 24 Show that there is a root of the equation 
  02364 23 =−+− xxx  
between 1 and 2. 
Solution: Let .2364)( 23 −+−= xxxxf We are looking for a solution of the given 
equation, that is, a number c between 1 and 2 such that f(c) = 0. Therefore we take a = 1, 
b = 2, and N = 0 in Theorem 3.17. We have  
  012262432)2(012364)1( >=−+−=<−=−+−= fandf  
Thus ),2(0)1( ff <<  that is, N=0 is a number between f(1) and f(2). Now f is 
continuous since it is a polynomial, so the Intermediate Value Theorem says there is a 
number c between 1 and 2 such that .0)( =cf In other words, the equation 

02364 23 =−+− xxx  has a root c in the interval (1, 2). 
Class Work 

1. Find A that makes the function  

 
continuous at x=1. 
2.  Demonstrate that the equation 0cos =+ xx  has at least one solution. 
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4 Derivatives  
4.1 Definition and Properties of Derivative; the Chain Rule 
In your previous calculus course you were introduced with the definition of the derivative 
of a function, properties of derivatives, the chain rule and important application of the 
derivative. Here our aim is to revise some of these concepts and introduce the derivatives 
of some more functions. 
Definition 4.1 The derivative of a function f at a number a, denoted by )(' af , is 

ax
afxfaf

ax −
−

=
→

)()(lim)('      (1) 

if this limit exists. 
If we write x = a + h, then x –a =h and x approaches a iff h approaches to 0. Therefore an 

equivalent way of stating the definition of the derivative is 

.)()(lim)('
0 h

afhafaf
h

−+
=

→
     (2) 

This last definition is more convenient for finding the derivative of a function.  

Example 1 Find the derivative of the function 23)( 2 ++= xxxf at –1. 
Solution: By definition 

   .)1()1(lim)1('
0 h

fhff
h

−−+−
=−

→
 

thus  

  

.1)1(limlim

23321lim

]2)1(3)1[(]2)1(3)1[(lim)1('

0

2

0

2

0

22

0

=+=
+

=

++−+−
=

+−+−−++−++−
=−

→→

→

→

h
h

hh
h

hhh
h

hhf

hh

h

h

 

 
I hope the student remembers that the slope of the tangent line to the graph of the function 

f at a point (a, f(a)) is given by the derivative of f at a i.e  )(' af  consequently using the 
point-slope form of the equation of a line, we have the equation of the tangent line to the 
curve y = f(x) at a point (a, f(a)) is given by ).)((')( axafafy −=− For instance the 
equation of the tangent line to the graph of 23)( 2 ++= xxxf  at (-1, 0) in our Example 1 is 
given by )1(10))1()(1(')1( +=−−−−=−− xyorxffy or simply y = x+1. 

Given a function f, we associate with it a new function ,'f  called the derivative of f, 
defined by:  

       .)()(lim)('
0 h

xfhxfxf
h

−+
=

→  
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We know that the value of 'f  at x, ),(' xf can be interpreted geometrically as the slope of 
the tangent line to the graph of f at the point (x, f(x)). 

Here, the domain of the function  is x 1−≥ , while the derivative is 
defined for all values of x 1−> .

Therefore, the derivative of x x 1++  is 1
1

2 x 1+⋅
+

1
1

2 x 1+⋅
+

0h
1

1

x h+( ) 1+ x 1++
+⎡

⎢
⎣

⎤
⎥
⎦

lim
→

Divide both the 
numerator and 
denominator by h (h 
is nonzero).

Some steps are omitted — see the complete solution.

Rationalize the radicals.

0h

h x h+( ) 1+ x 1+−⎡⎣ ⎤⎦
x h+( ) 1+ x 1++⎡⎣ ⎤⎦
x h+( ) 1+ x 1++⎡⎣ ⎤⎦

⋅+

h
lim
→

Simplify.
0h

h x h+( ) 1++ x 1+−
h

lim
→

Replace f(x+h) and f(x) by the 
corresponding expressions.

0h

x h+ x h+( ) 1++⎡⎣ ⎤⎦ x x 1++( )−
h

lim
→

f'(x) = 
0h

f x h+( ) f x( )−
h

lim
→

The definition of 
derivative.

f x( ) x x 1++:=Find the derivative of 
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Definition 4.2 A function f is differentiable at a if )(' af exists. It is differentiable on 
an open interval (a, b) [or (a, ∞) or (-∞, a) or (-∞, ∞)] if it is differentiable at every 
number in the interval. 
Example 3 Show that xxf =)(  is not differentiable at 0.  
Solution: Observe that  

   
⎩
⎨
⎧

<−
≥

=
0

0
xifx

xifx
x  

 
then for x >0 using (1) we have 

   11limlim
0
0

lim
000

===
−

−
+++ →→→ xxx x

x
x
x

 

and for x<0 

   .11limlim
0
0

lim
000

−=−=
−

=
−

−
−−− →→→ xxx x

x
x
x

 

which implies  

0
0

lim
0 −

−
→ x

x
x

 does not exist 

thus f is not differentiable at 0. 
Theorem 4.3 If f is differentiable at a, then f is continuous at a. 
Proof: To prove that f is continuous at a, we have to show that ).()(lim afxf

ax
=

→
 

We do this by showing that the difference )()( afxf − approaches 0. 
For x ≠ a we can divide and multiply by x – a  

We did this in order to involve the difference quotient. Thus we can use the Product Law 
of limits to write  

  

[ ]

.00)('

)(lim)()(lim

)()()(lim)()(lim

=⋅=

−
−
−

=

−
−
−

=−

→→

→→

af

ax
ax

afxf

ax
ax

afxfafxf

axax

axax

 

Therefore  

  

).(0)(

)]()([lim)(lim

)]()()([lim)(lim

afaf

afxfaf

afxfafxf

axax

axax

=+=

−+=

−+=

→→

→→

 

and so f is continuous at a. 
Note: the converse of Theorem 4.3 is false: that is, there are functions that are continuous 
but not differentiable. For instance, the function xxf =)(  is continuous at 0 because  

   ).0(0lim)(lim
00

fxxf
xx

===
→→

 

But as we have seen in Example 3 that f is not differentiable at 0. 
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Let me remind u some of the differentiation rules that u have developed in your previous 
calculus course. I advice the student to check on these results using the definition of 
derivative. 
The power rule: If nxxf =)(  for any real number n is given by .)(' 1−= nnxxf  
Derivatives of sine and cosine: .sin)(coscos)'(sin xxandxx −==  

Derivatives of exponential and logarithmic functions: .1)(ln)'(
x

xandee xx ==  

etc. 
We also need to revise the rules of finding the derivatives of combined functions as in the 

table below. 

Let f and g be differentiable then 
1. ')'( cfcf =     2.  '')'( gfgf +=+  
3.  '')( gfgf −=−    4.  '')'( fggffg +=  

5.  2

'
''

g
fggf

g
f +

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
   6.  0)'( =c  

Class work 
Find the derivative of each of the following functions 

1. 255)( 525 ++= xxxf   2. 2
2 1)(

x
xxf −=  

3.  44)( xxxf +=    4. 
xx

xxxf
2

1)( +=  

5.  xxxf sin)( =    6.  xxxf cossin)( =  
7.  xxf tan)( =    8.  xxf csc)( =  

9.   
x

xxf
tan1

sec)(
+

=    10.  
x

xxxf
sec

tan)(
2

=  

 
The Chain Rule  
The rules that we have introduced till now are not enough to find composition of 
functions thus we need to develop an appropriate to handle these cases. The Chain Rule is 
such a rule. 
Theorem 4.5 If the derivatives )(' xg  and ))((' xgf both exist, then 

)('))((')()'( xgxgfxgf =o  
Example 4 Find xxhifxh 2cos)()(' =  
Solution: Let xxgandxxf 2)(cos)( == . Then .gfh o=  Since 
 xxfandxg sin)('2)(' −==  
we conclude that  
 .2sin2)2)(2sin()('))((')(' xxxgxgfxh −=−==  

Example 2 Find 21)()(' xxhifxh +=  

Solution: Let xxfandxxg =+= )(1)( 2  consequently .gfh o= Then  

 .0
2

1)('2)(' >== xfor
x

xfandxxg  
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Therefore  

 
22 1

2
12
1)('))((')('

x
xx

x
xgxgfxh

+
=

+
== . 

 
 
Class Work 
Find the derivative of the functions 

1. 5025 )32( ++= xxy   2. 
3 6 12

1
++

=
xx

y  

3.  ))(tancos(sin xy =   4. )cos(sin 2 xy =  
Find the equation of the tangent line to the curve at the given point 
5.  )0,1(,)1( 1023 −+− xxx   6. )2,1(,/1 xxy +=  

4.2  Inverse Functions and Their Derivatives  
In pre-calculus mathematics courses we defined a function f as a relation in which no two 
elements of the relation have the same first coordinate. Also we have seen that for same 
of the functions the relation that is found by interchanging the entries of the ordered pairs 
can be again a function and we called such a function the inverse of the original function. 
In this section we discuss general properties of inverses and their derivatives. 

4.2.1 Inverse Functions 
In order to define the inverse of a function, it is essential that different numbers in the 
domain always give different values of  f. Such functions are called one-to-one functions. 
Definition 3.1 A function f with domain D and range R is one-to-one function if 
whenever ba ≠ in D, then )()( bfaf ≠ in R. 

Note from Definition 3.1 we see that every strictly increasing function is one-to-one, 
because if ,ba <  then )()( bfaf < , and if ,ab <  then )()( afbf < in short if ba ≠ , then 

)()( bfaf ≠ . Similarly, every strictly decreasing function is one-to-one. We now give the 
definition of inverse functions in terms of one-to-one function. 

Definition 3.2 Let f be a one-to-one function with domain D and range R. A function g 
with domain R and range D is the inverse function of f, provided the following condition 
is true for every x in D and every y in R: 
   )()( ygxifonlyandifxfy == . 

If a function f has an inverse function g, we often denote g by .1−f  Of course we must note 
here that almost always 1−f  is different from 1/f. 

If f is a one-to-one function with domain D and range R, then for each number y in R, there 
is exactly one number x in D such that )(xfy = . Since x is unique, we may define a 
function g from R to D by means of the rule ).(ygx = g reverses the correspondence given 
by f. We call g the inverse function of f. In summary, a function f has an inverse if and only if 
it is one-to-one. This conclusion is especially easy to apply to differentiable functions whose 
domains are intervals. We know that a function f is strictly increasing on I (and hence has an 
inverse) if 0)(' >xf for all x in I or if 0)(' ≥xf  for all x in I and 0)(' =xf  for at most 
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finitely many values of x. Similarly, f is strictly decreasing on I (and hence has an inverse) if 
0)(' <xf for all x in I or if 0)(' ≤xf  for all x in I and 0)(' =xf for at most finitely many 

values of x. 

Example 1   Let 4632)( 57 −++= xxxxf  then since 061517)(' 26 >++= xxxf  f is 
strictly increasing consequently it is invertible. 
Properties of Inverses 
From Definition 3.2 and the theories we developed above we can drive the following 
elementary relationships between f and 1−f . 
I. Domain of 1−f = range of f   and range of 1−f = domain of  f. 
II. ( 1−f )-1= f 
III. 1−f (f(x)) = x for all x in the domain of f. 
IV. f( 1−f (y)) = y for all y in the range of f. 

In some cases we can find the inverse of a one-to-one function by solving the equation 
)(xfy =  for x in terms of y, obtaining an equation of the form ).(1 yfx −=  The following 

guidelines summarize this procedure. 

Guidelines for finding 1−f  is simple cases 
1. Verify that f is a one-to-one function (or that f is increasing or is decreasing) 

throughout its domain. 
2. Solve the equation )(xfy =  for x in terms of y, obtaining an equation of the form 

).(1 yfx −=  
The success of this method depends on the nature of the equation )(xfy = , since we 
must be able to solve for x in terms of  y. 
Example 2 Let .32)( += xxf  Find the inverse of f. 
Solution: Following the guidelines, first since 02)(' >=xf , f is increasing for all real 
number x and thus 1−f  exists for all real number x. 
Now as guideline 2, we consider the equation  
   32 += xy  
and solving for x in terms y, we obtain  

   
2

3−
=

yx  

we now let  

   
2

3)(1 −
=− yyf  

Since we customarily use x as the independent variable, we replace y by x to obtain 

   .
2

3)(1 −
=− xxf  

Example 3   Let .03)( 2 ≥−= xforxxf  The inverse function of f. 
Solution:  The domain of f is ),,0[ ∞ and the range is ).,3[ ∞− Since f is increasing, it is 
one-to-one and hence has an inverse function 1−f  that has domain ),3[ ∞−  and range 

).,0[ ∞  
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As in guideline 2, we consider the equation 
    32 −= xy  
and solve for x, obtaining 
    .3+±= yx  

Since x is nonnegative, we reject 3+−= yx  and let 

,3)(1 +=− yyf  or equivalently, .3)(1 +=− xxf  

Graphs of Inverse Functions 
There is an interesting relationship between the graphs of a functions f and 1−f . We first 
not that b = f(a) is equivalent to a = 1−f (b). These equations imply that the point (a,b) is 
on the graph of f if and only if the point (b,a) is on the graph of 1−f . But (a,b) and (b,a) 
are symmetric with respect to the line y = x. Thus the graph of 1−f  is obtained by simply 
reflecting the graph of f through the line y = x. 
Example 4   For each function f, sketch the graph of  f and 1−f  on the same coordinate 
system. 
a) 32)( += xxf   c)  3)( 2 −= xxf   c)  xxf sin)( =  
Solution:  In each case the graph of 1−f  is obtained by reflecting the graph of  f  through 
the line y = x. The graphs appear in fig 3.1 below. 
 
 
 
 
 
 
 
 
 
 
Exercise 4.1 
 I   Determine whether the given function has an inverse. If an inverse exists, give the domain 
and range of the inverse and graph the function and its inverse.  
1.  34)( += xxf     2.  30,9)( 2 ≤≤−= xxxf  
3.  xxxf sin)( −=     4.  )3ln()( xxf −=  

5.  
2

2)(
−

=
x

xxf     6.  1)( 3 += xxf  

II   Show f has an inverse if  

7.  .1)(
0

4 xallfordttxf
x

∫ +=   8.  .)(sin)(
0

24 xallfordttxf
x

∫=  

4.2.2 Continuity and Differentiability of Inverse Functions 
If f is continuous, then the graph of f has no breaks or holes, and hence the same is true for 
the (reflected) graph of 1−f . Thus we see intuitively that if f is continuous on [a,b], then 1−f  



 Prepared by Tibebe-selassie T/mariam 70

continuous on )].(),([ bfaf  We can also show that if f is increasing, then so is 1−f . These 
facts are stated in the next theorem that is given with out a proof. 

Theorem 3.3 If f is continuous and increasing on [a,b], then f has an inverse function 
1−f  that is continuous and increasing on )].(),([ bfaf  

We can also prove the analogous result obtained by replacing the word increasing in 
Theorem 3.3 by decreasing. 

The next theorem provides us a method of finding of the derivative of an inverse function. 

Theorem 3.4 Suppose that f has an inverse and is continuous on an open interval I 
containing a. Assume also that )(' af  exists, ,0)(' ≠af  and .)( caf =  Then )()'( 1 cf −  
exists, and  

     
)('

1)()'( 1

af
cf =−     (1) 

Proof   Using the fact that acf =− )(1 and definition of the derivative, we find that  

  
)())((

)(lim)()(lim)()'( 1

111
1

afyff
ayf

cy
cfyfcf

cycy −
−

=
−
−

= −

−

→

−−

→

−   (2) 

provided that the latter limit exists. We will simultaneously show that it does exist and 
find its value. First notice that 1−f  is continuous at c by theorem 3.3. Therefore 
   acfyf

cy
== −−

→
)()(lim 11  

 
so that if ),(1 yfx −=  then x approaches a as y approaches c. Moreover, the fact that f   
has an inverse and acf =− )(1 implies that ayf ≠− )(1  for .cy ≠  Consequently (2) and 
the Substitution Theorem for Limits (with x substituting for )(1 yf − )imply that  

  
.

)('
1

)()(lim

1
)()(

lim
)())((

)(lim)()'( 1

1
1

af
ax

afxf

afxf
ax

afyff
ayfcf

ax

axcy

=

−
−

=

−
−

=
−
−

=

→

→−

−

→

−

 

It is convenient to restate Theorem 3.4 as follows. 
Corollary 3.5 If 1−f is the inverse function of a differentiable function f and if 

,0))((' 1 ≠− xff  then  

.
))(('

1)()'( 1
1

xff
xf −

− =    (3) 

Example 1 Let .248)( 37 −++= xxxxf Find ).2()'( 1 −−f  
Solution: In order to use (1), we must first find the value of a for which f(a) = –2. But 
f(0) = –2, so a = 0. Since ,4247)(' 26 ++= xxxf  it follows that .4)0(' =f  Thus we 
conclude from (1) that  

    
4
1

)0('
1)2()'( 1 ==−−

f
f  
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Example 2  If ,12)( 3 −+= xxxf  prove that f has an inverse function 1−f , and find the 
slope of the tangent line to the graph of 1−f at the point P(2,1). 
Solution:  Since 023)(' 2 >+= xxf  for every x, f is increasing and hence is one-to-one. 
Thus, f has an inverse function 1−f . Since f(1) = 2, it follows that ,1)2(1 =−f  and 
consequently the point P(2,1) is on the graph of 1−f . It would be difficult to find 

1−f using Guidelines, because we would have to solve the equation ,123 −+= xxy for x 
in terms of y. However, even if we cannot find 1−f explicitly, we can find the slope 

)2(1−f  of the tangent line to the graph of g at P(2,1). Thus, by Theorem 3.4 

    .
5
1

)1('
1

))2(('
1)2( 1

1 === −
−

fff
f  

An easy way to remember Corollary 3.5 is to let ).(xfy =  If 1−f is the inverse function of 
f, then .))(()( 11 xxffyf == −−  Then 

   
)('

1
))(('

1)()'( 1
1

xfyff
yf == −

−  

or, in differential notation, 

    .1

dx
dydy

dx
=  

Example 3 Let f be the function in example 2 then let )(12 13 yfxandxxy −=−+= . 

Then                            ;
23

1
/
1

2 +
==

xdxdydy
dx

  

That is    .
2))((3

1
23

1)()'( 212
1

+
=

+
= −

−

yfx
yf  

Or using x 

   
2))((3

1)()'( 21
1

+
= −

−

xf
xf . 

Consequently, to find )()'( 1 xf −  it is necessary to know ),(1 xf − just as in corollary 3.5. 
Exercise 4.2   
 I   Find ).()'( 1 cf −  
      1.  6;7)( 3 =+= cxxf    2.  0;sin)( =+= cxxxf  

      3.  2;)( =+= cxxxf    4.  22;ln)( ecxxxf ==  
II  a)  Use 'f  to prove that f has an inverse function. b) Find the slope of the tangent line 
at the point P on the graph of .1−f  
5.  )1,5(;123)( 25 Pxxxxf −++=   6.  )1,3(;0);/1(4)( 35 Pxxxxf >−=  
III  Find dx/dy 
7.  0,4)( 2 ≥−= xxxf    8.  )1ln()( 3 += xxf  
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4.2.3 Inverse Trigonometric Functions 
Since the trigonometric functions are not one-to-one, they do not have inverse functions. 

By restricting their domains, however, we may obtain one-to-one functions that have the 
same values as the trigonometric functions and that do have inverse over these restricted 
domains. 

The Arcsine Function 
If we restrict the domain of the sine function to ],2/,2/[ ππ− then the resulting function 
is strictly increasing (because its derivative is positive except .)2/2/ ππ and− Hence 
the restricted function which is called arcsine function has domain [–1,1], and range 

].2/,2/[ ππ−  Its value at x is usually written xarcsin or sin-1x. As a consequence, 

   
2/2/11

sinarcsin
ππ ≤≤−≤≤−
==

yandxfor
xyifonlyandifyx

 

We also see from the property of inverse functions that 
 .11)sin(arcsin.2/2/)arcsin(sin. ≤≤−=≤≤−= xforxxiixforxxi ππ  
Example 1   Evaluate 

a) ⎟
⎠
⎞

⎜
⎝
⎛

2
1arcsinsin   b)  ⎟

⎠
⎞

⎜
⎝
⎛

4
sinarcsin π

  c)  ⎟
⎠
⎞

⎜
⎝
⎛

6
5sinarcsin π

 

Solution: 

a) 
2
1

2
1arcsinsin =⎟

⎠
⎞

⎜
⎝
⎛  since 1

2
11 <<−  

b) 
44

sinarcsin ππ
=⎟

⎠
⎞

⎜
⎝
⎛   since  

242
πππ

<<−  

c) .
62

1arcsin
6

5sinarcsin ππ
=⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛   

In Example 1c) 6/5π  is not between 2/2/ ππ and− , and hence we cannot use ii. 
Instead we use properties of special angles to first evaluate )6/5sin( π  and then find 

).2/1arcsin(  

Example 2 Simplify the expression )sec(arcsin x  
Solution:  We will evaluate )sec(arcsin x  by evaluating ysec  for the value of y in 

)2/,2/( ππ−  such that ,arcsin yx =  that is, .sin xy =  Since ,0sin ≥= xy  it  
follows that .2/0 π<≤ y Applying the Pythagorean Theorem to the triangle in Fig (3.2) 
 
 
 
 
 
The Arccosine Function 

If the domain of the cosine function is restricted to the interval ],,0[ π we obtain a one-to-
one continuous decreasing function that has a continuous decreasing inverse function. We 
call the inverse function of cosine arccosine function. The domain of the inearccos is [–

x  

x−1  

1
We find .

1
1sec

x
y

−
=  Therefore 

.
1
1sec)sec(arcsin

x
yx

−
==  
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1,1], and its range is ].,0[ π Its value at x is usually written xorx 1cosarccos − . As a 
consequence, 

    
π≤≤≤≤−

==
yandxfor

xyifonlyandifyx
011

cosarccos
 

Since cos and arccos are inverse functions of each other, we obtain the following 
properties. 

 .11)cos(arccos.0)arccos(cos. ≤≤−=≤≤= xforxxiixforxxi π  
Example 2 Evaluate 

a)  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−

2
1arccoscos   b)  ⎟

⎠
⎞

⎜
⎝
⎛

3
2cosarccos π  c)  ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−

2
1cosarccos  

Solution: 

a) 
2
1

2
1arccoscos −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−  since  1

2
11 <−<−  

b) 
3

2
3

2cosarccos ππ
=⎟

⎠
⎞

⎜
⎝
⎛  since  ππ

<<
3

20  

c) 
42

2arccos
4

cosarccos ππ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−  

Note that in the c) part of the preceding Example 2, 4/π−  is not between 0 and π, and 
hence we cannot use property ii. above. Instead, we first evaluate )4/cos( π− and then find 

).2/2(cos 1−  

Example 3 Simplify the expression ).cos(arctan x  
Solution: Let .arctan xy =  Then xy =tan  and .2/2/ ππ <<− y  We want to find ycos  
but, since ytan is known, it is easier to find ysec  first: 
  222 1tan1sec xyy +=+=  

  )2/2/0sec(1sec 2 ππ <<−>+= yforyasxy  

Thus  .
1

1
sec

1cos)cos(arctan
2xy

yx
+

===  

Note instead of using trigonometric identities as in the solution above, it is easy to use a 
triangular diagram. If we let xy arctan= then xy =tan , and using the right triangle 
below we can read from the fig that 
 
           12 +x  

x 

y 

1 

.
1

1cos)cos(tan
2

1

x
yx

+
==−  
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2
3

The Arctangent Function 
To find an inverse for the tangent function, we restrict the tangent function to 

).2/,2/( ππ−  The resulting inverse function is called the arctangent function. Its 
domain is (-∝,∝), and its range is ).2/,2/( ππ−  We usually write its value at x as 

xarctan  or .tan 1 x−  As a consequence, 

    
2/2/

tanarctan
ππ <<−
==

yforandxanyfor
xyifonlyandifyx

 

Thus for any x, xarctan is the number y between 2/2/ ππ and−  whose tangent is x. 
As with arcsin and arccox, we have the following properties of arctan 

 .)tan(arctan.2/2/)arctan(tan. xeveryforxxiixforxxi =≤≤−= ππ  
Example 4   
a) 99)99tan(arctan =  

b) 
4

)
4

arctan(tan ππ
=  

c) 00arctan)arctan(tan ==π  
Example 5  Evaluate )sec(arctan 3

2  
Solution: If we let ,arctan 3

2=y  then .tan 3
2=y  We wish to find .sec y  Since 

2/arctan2/ ππ <<− x  for every x and ,0tan >y it follows that 2/0 π<< y  and from  
the triangle below we obtain that 
 
 
 
The remaining trigonometric functions are not used as frequently and are summarized 
here as below: 

 

),0(cot)(cot

]2/3,(]2/,0(sec)1(sec

]2/3,(]2/,0(csc)1(csc

1

1

1

π

πππ

πππ

∈=⇔ℜ∈=

∪∈=⇔≥=

∪∈=⇔≥=

−

−

−

yandxyxxy

yandxyxxy

yandxyxxy

 

Of these functions only the arcsecant function appears with any frequency in the sequel. 
Exercise 4.3  
I   Find the exact value of the expression, whenever it is defined. 
   1.  )2/2arcsin(−      2.  )2/1arccos(−  

   3.  )3arctan(−     4.  )3/2sin(arcsin  
   5.  )4/5arcsin(sin π     6.  )4/5arccos(cos π  
   7.  )]5/4arcsin()4/3(cos[arctan −−  8.  )]17/8arccos()4/3(tan[arctan +  
II Rewrite as an algebraic expression in x for .0>x  
     9.  )3/(sec(arcsin x    10.  ))2/csc(tan( xarc  
   11.  )arcsin2cos( x     12.   )arcsin2sin( x  
Derivatives and Integrals  
We know see the derivatives and integrals of the inverse trigonometric functions in the 
following two theorems. 

 

.
3
13sec

3
2arctansec ==⎟

⎠
⎞

⎜
⎝
⎛ y

 y 



 Prepared by Tibebe-selassie T/mariam 75

Theorem 3.1   

2

1

1
1)(sin

x
x

dx
d

−
=−  

2

1

1
1)(cos

x
x

dx
d

−
−=−  2

1

1
1)(tan
x

x
dx
d

+
=−  

1
1)(csc
2

1

−
−=−

xx
x

dx
d

 
1

1)(sec
2

1

−
=−

xx
x

dx
d

 2
1

1
1)(cot
x

x
dx
d

+
−=−  

Proof  

To proof 
2

1

1
1)(sin

x
x

dx
d

−
=− , put xy 1sin −=  so that xy =sin  whenever 11 <<− x  

and .2/2/ ππ <<− y  Then differentiating xy =sin implicitly, we have 

   1cos =
dx
dyy  

and hence  
y

x
dx
d

dx
dy

cos
1)(sin 1 == −  

Since yy cos,2/2/ ππ <<−  is positive and, therefore, 

   .1sin1cos 22 xyy −=−=  

Thus,   
2

1

1
1)(sin

x
x

dx
d

−
=−  

For .1<x  Observe that the inverse sine function is not differentiable at .1±   
Since the inverse tangent function is differentiable at every real number, let us consider the 

equivalent equation  

   xyandxy == tanarctan  
for  .2/2/ ππ ≤≤− y  Differentiating ytan  and trigonometric identities we have 

  .
1

1
tan1
1

sec
1

tan
1)(tan 222

1

xyy
dy

yd
x

dx
d

+
=

+
===−  

In other words,       2
1

1
1)(tan
x

x
dx
d

+
=− . 

The rest of the formulas can be obtained in similar fashion. 
Example 1 Find  

a)  23arcsin x
dx
d  b)  )arccos(ln x

dx
d  c)  xe

dx
d 2arctan  d)  23sec xarc

dx
d  

Solution: Using Theorem 3.1 along the Chain Rule, we have 

a) 
( ) 4

2

22

2

91
6)3(

31

1)3(arcsin
x

xx
dx
d

x
x

dx
d

−
=

−
=  

b) 
22 )(ln1

1)(ln
)(ln1

1)arccos(ln
xx

x
dx
d

x
x

dx
d

−
−=

−
−=  

c) 22

2
2

22
2

)(1
2)(

)(1
1arctan x

x
x

x
x

e
ee

dx
d

e
e

dx
d

+
=

+
=  
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d) 
19

2)3(
1)3(3

13sec
4

2

222

2

−
=

−
=

xx
x

dx
d

xx
xarc

dx
d  

Each of the formulas in Theorem 3.1 gives rise to an integration formula. The three most 
useful of these are given in the following theorem. 

Theorem 3.2 

i) C
a
udu

ua
+=

−
∫ arcsin1

22
 

ii) C
a
u

a
dx

xa
+=

+∫ arctan11
22  

iii) C
a
uarc

a
du

auu
+=

−
∫ sec11

22
 

The proof of the above example is left as exercise. 

Example 2 Evaluate dx
e

e
x

x

∫
− 4

2

1
 

Solution: If we let xeu 2=  so that dxedu x22= , the integral may be written as in 
Theorem (i) as below. 

 .arcsin
2
1arcsin

2
1

2
1

1
1

1
2

24

2

CeCudu
u

dx
e

e x

x

x

+=+=
−

=
−

∫∫  

Example 3  Evaluate ∫ +
.

4 6

2

dx
x

x
 

Solution: The integral may be written as in the second formula of Theorem (3.2) by 
letting 42 =a and using the substitution  
   dxxduxu 23 3, ==  
and proceed as follows: 

   

.
2

arctan
6
1

2
arctan

2
1

3
1

2
1

3
1

34
1

4 2226

2

Cu

Cu

du
u

du
u

dx
x

x

+=

+⋅=

+
=⎟

⎠
⎞

⎜
⎝
⎛

+
=

+ ∫∫ ∫

 

Example 4   Evaluate ∫
−

dx
xx 9
1
4

 

Solution:  The integral may be written as in Theorem 3.2(iii) by letting 92 =a  and using 
the substitution 

   ,2,2 xdxduxu ==  
we introduce 2x is the integrand by multiplying numerator and denominator by 2x and 
then proceed as follows: 
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.
3

sec
6
1

3
sec

3
1

2
1

3
1

2
1

2
3)(2

1
9

1

2

22

2224

Cxarc

Cuarc

du
uu

xdx
xxx

dx
xx

+=

+⋅=

−
=

−⋅
=

−

∫

∫∫

 

Exercise 3.3  
I  Find the derivative of the function. Simplify where possible. 
1.  )12(sin)( 1 −= − xxf   2.  xxxf arctan)1()( 2+=  

3.  )1(tan)( 21 xxxf +−= −   4.  xxxxf 111 cos)(cos)cos()( −−− ++=  
5.  xxxf arctan)(tan)( =   6.  xexxf 4arctan1 )4(tan)( −=  
II  Evaluate the integral 

7.  ∫ +

4

0
2 16

1
x

    8.  ∫
−

dx
x

x
2sin9

cos  

9.  ∫
−

dx
e x 25

1
2

   10.  ∫ +
dx

xx )1(
1  

4.2.4 Hyperbolic Functions 
The exponential expressions 

   
22

xxxx eeandee −− +−
 

occur in advanced applications of calculus. Their properties are similar in many ways to 
those of xsin and xcos , and they have the same relationship to the hyperbola that the 
trigonometric functions have to the circle. For this reason they are collectively called 
hyperbolic functions and individually called hyperbolic sine and hyperbolic cosine. 
We also define the rest of the hyperbolic functions in terms of these functions. 
Definition 3.3  

  

x
x

x
xx

x
hxeex

x
hxeex

xx

xx

tanh
1coth

cosh
sinhtanh

cosh
1sec

2
cosh

sinh
1csc

2
sinh

==

=
+

=

=
−

=

−

−

 

The hyperbolic functions satisfy a number of identities that are analogues of well-known 
trigonometric identities. We least some of the as below 
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Hyperbolic Identities   

yxyxyx
yxyxyx

xhxxxx
xxxxx

xxxx

sinhsinhcoshcosh)cosh(
sinhcoshcoshsinh)sinh(

sectanh1coshsinh22sinh
2coshsinhcosh1sinhcosh

cosh)cosh(sinh)sinh(

22

2222

±=±
±=±

=−=

=+=−

=−−=−

 

The proof the above identities are left as exercise. 
The derivatives of the hyperbolic functions are easily computed. For example, 

 xeeee
dx
dx

dx
d xxxx

cosh
22

)(sinh =
+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

−−

 

We list the differentiation formulas for the hyperbolic functions as below. The remaining 
proofs are left as exercises. Note the analogy with the differentiation formulas for 
trigonometric  
Theorem 3.4  

 

xhx
dx
dxhx

dx
d

xhxhx
dx
dxx

dx
d

xhxhx
dx
dxx

dx
d

22 csccothsectanh

tanhsecsecsinhcosh

cothcsccsccoshsinh

−==

−==

−==

 

Example 1 If )cosh()( 2 xexf x += , find ).(' xf  
Solution: Applying Theorem 3.4, with the chain rule, we obtain 
  )sinh()12()]12[()][sinh()(' 2222 xeeexexf xxxx ++=+⋅+=  
 
The integration formulas that correspond to the derivative formulas in theorem 3.4 are as 
follows. 
Theorem 3.5 

 

∫∫
∫∫
∫∫

+−=+−=

+−=+=

+=+=

ChxhxChxhx

CxxdxhCxxdxh

CxxdxCxxdx

csccothcscsectanhsec

cothcsctanhsec

sinhcoshcoshsinh
22   

 
Example 2 Evaluate .sinh 32 dxxx∫  

Solution: If we let 3xu = , then dxxdu 23=  and 

  

.cosh
3
1

cosh
3
1

)(sinhsinh

3

3
132

Cx

Cu

duudxxx

+=

+=

= ∫∫
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Exercise 3.4  
I   Find )(' xf  if )(xf it the given expression. 
1.  xe x sinh      2.  )cosh( 4x  
3.  )cos(sinh x      4.  )cosh(coshtanh xe x  
II   Evaluate the integral 
5.  ∫ xdxhx 3sec3tanh    6.  ∫ dxhx 2secsinh  

7.  ∫ hxdxsec      8.  ∫ xdxtanh  
III. Verify the identity. 

9. yxyxyx sinhcoshcoshsinh)sinh( −=−  

10. 
2

1cosh
2

sinh 2 −
=

xx
 

4.2.5 Inverse Hyperbolic Functions 
The hyperbolic sine function is continuous and increasing for every x and hence, has a 
continuous, increasing inverse, function, denoted by 1sinh − . Since xsinh  is defined in 
terms of ,xe  we might expect that 1sinh −  can be expressed in terms of the inverse, ln, of 
the natural exponential function. The first formula of the next theorem shows that this is 
the case. 
Theorem 3.6 

 
10,11lnsec.41,

1
1ln

2
1tanh.3

1),1ln(cosh.2)1ln(sinh.1
2

11

2121

≤<
−+

=<
−
+

=

≥++=++=

−−

−−

x
x

xxhx
x
xx

xxxxxxx
 

Proof: To prove (1), let .sinh 1 xy −= Then 

   
2

sinh
yy eeyx

−−
==  

then   .02 =−− − yy exe  
Multiplying by ey, we have 
   0122 =−− yy xee  
which is a quadratic equation in ey: 
Solving by the quadratic formula, we get 

   1
2

442 2
2

+±=
+±

= xxxxe y  

Since 012 <+− xx  and 0>ye , we must have  

   .12 ++= xxe y  
The equivalent logarithmic form is 
   )1ln( 2 ++= xxy  

that is,   ).1ln(sinh 21 ++=− xxx  
The proofs of the formulas 2-4 in theorem 3.6 are left as exercise. 
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The inverse hyperbolic functions are all differentiable because the hyperbolic functions are 
differentiable. The formulas in theorem 3.7 below can be proved by the method for inverse 
functions or by differentiating the formulas in theorem 3.6. 

Theorem 3.7 

 

2
1

2
1

2

1

2

1

2

1

2

1

1
1)(coth.61||,

1
1)(tanh.5

10,
1
1)(sec.41,

1
1)(cosh.3

1
1)(csc.2

1
1)(sinh.1

x
x

dx
dx

x
x

dx
d

x
xx

xh
dx
dx

x
x

dx
d

xx
xh

dx
d

x
x

dx
d

−
=<

−
=

<<
−

−=>
−

=

+
=

+
=

−−

−−

−−

 

 

Proof: To proof (1) let .sinh 1 xy −=  Then xy =sinh  and y
dy
dx cosh= . Since 0cosh ≥y  

and ,1sinhcosh 22 =− yy  we have yy 2sinh1cosh += . Then applying the method for 
inverse functions, we have 

  .
1

1
sinh1
1

cosh
11)(sinh

22

1

xyy
dy
dx

x
dx
d

dx
dy

+
=

+
==== −  

Observe that we could have done the proof (1) by using formula (1) of Theorem 3.6 as 
below. 

  

.
1

1
1)1(

1

1
1

1
1

)1ln()(sinh

222

2

22

21

+
=

+++

++
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
+

++
=

++=−

xxxx
xx

x
x

xx

xx
dx
dx

dx
d

 

Example 1   Find ).(tansinh 1 x
dx
d −   

Solution: Using Theorem 3.7 and the Chain rule, we have 

  
.secsec

sec
1

sec
sec

1tan
1tan

1)(tansinh

2
2

2

22

1

xx
x

x
x

x
dx
d

x
x

dx
d

==

=
+

=−

 

Example 2  Evaluate dx
x∫ −

2/1

0
21

1 . 

Solution: Referring to Theorem 3.7 we can see that the antiderivative of 21/1 x−  is 
.tanh 1 x−  Therefore 
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3ln
2
1

1
1ln

2
1

tanh
1

1

2/1

0

2/1

0

1
2/1

0
2

=

⎟
⎠
⎞

⎜
⎝
⎛

−
+

=

=
−

−∫

x
x

xdx
x

 

 
Exercise 3.5 
I   Find )()(' xfifxf  is the given expression. 

1.  x5sinh 1−      2.  x1cosh −  

3.  21 1lntanh xxx −+−    4.  0,1sec 21 >−− xxh  
II   Evaluate the integral 

5.  ∫ xdx2sinh      6.  ∫ +
dx

x
x

cosh1
sinh

 

7.  ∫
−16x

x

e

e
     8.  ∫

+
dx

x
x

2cos1
sin  

III   Prove that the formulas 2,3, and 4 in Theorem 3.6. 

4.2.6 L‘Hôpital’s Rule  
While we study limits in the previous course of calculus we considered limits of quotients 
such as  

   
x

xand
x
x

xx

sinlim
2
4lim

0

2

2 →−→ +
−

 

and calculated the limits by using algebraic, geometric, and trigonometric methods even 
if the limits have the undefined form 0/0. In this section we develop another technique 
that employs the derivatives of the numerator and denominator of the quotient. This new 
technique is called L‘Hôpital’s rule. For the proof of this rule we need the following 
generalization of the Mean Value Theorem. 
Theorem 4.1 (Cauchy’s formula)  
If f and g are continuous on [a,b] and differentiable on (a,b) and if 0)(' ≠xg for every x in 
(a,b), then there is a number c in (a,b) such that 

    
)('
)('

)()(
)()(

cf
cf

agbg
afbf

=
−
−

 

Proof:  We first note that ,0)()( ≠− agbg  because otherwise g(a)=g(b) and, by Rolle’s 
Theorem, there is a number c is (a,b) such that ,0)(' =cg  contrary to our assumption 
about '.g  

Let us introduce a new function h as follows: 
  )()]()([)()]()([)( xfagbgxgafbfxh −−−=  
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for ever x in [a,b]. It follows that h is continuous on [a,b] and differentiable on (a,b) and 
that h(a) = h(b). By Rolle’s Theorem, there is a number c in (a,b) such that 0)(' =ch ; that 
is, 
  0)(')]()([)(')]()([ =−−− cfagbgcgafbf . 
This is equivalent to Cauchy’s formula. 
The Indeterminate Form 0/0 
If ),(lim0)(lim xgxf

axax ++ →→
==  then we say that )(/)(lim xgxf

ax +→
 has the indeterminate 

form 0/0. The same notion applies if 
+→ax

lim  is replaced by 
−→bx

lim ,
cx→

lim , .lim,lim
−∞→∞→ xx

or  The 

limits  

x
xand

x
x

xx

sinlim
2
4lim

0

2

2 →−→ +
−

 

therefore have the indeterminate form 0/0. Our first version of L‘Hôpital’s rule is 
concerning the indeterminate form 0/0. 
Theorem 4.2 (L‘Hôpital’s rule)  
Let L be a real number or .∞−∞ or  
a. Suppose f and g are differentiable on (a,b) and .0)(' bxaforxg <<≠  If  

  L
xg
xfandxgxf

axaxax
===

+++ →→→ )('
)('lim)(lim0)(lim  

then  

   
)('
)('lim

)(
)(lim

xg
xfL

xg
xf

axax ++ →→
==  

An analogous result holds if 
+→ax

lim is replaced by 
−→bx

lim or by ,lim
cx→

 where c is any number in 

(a,b). In the letter case f and g need not be differentiable at c. 
b. Suppose f and g are differentiable on ),( ∞a  and 0)(' ≠xg  for ax > . If  

  L
xg
xfandxgxf

xxx
===

∞→∞→∞→ )('
)('lim)(lim0)(lim  

then  

  
)('
)('lim

)(
)(lim

xg
xfL

xg
xf

xx ∞→∞→
==  

An analogous result holds if .limlim
−∞→∞→ xx

byreplacedis  

Proof: We establish the formula involving the right-hand limits in (a). Define F and G on 
[a,b) by 

    
⎩
⎨
⎧

=
<<

=
bxfor

bxaforxf
xF

0
)(

)(  

    
⎩
⎨
⎧

=
<<

=
axfor

bxaforxg
xG

0
)(

)(  

Then  
   )(0)(lim)(lim aFxfxF

axax
===

++ →→
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so that F is continuous [a,b). The same is true of G. Moreover, F and G are differentiable 
on (a,b), since they agree with f and g, respectively, on (a,b). Consequently if x is any 
number in (a,b), the F and G are continuous on [a,x] and differentiable on (a,x). By the 
Generalized Mean Value Theorem, this means that there is a number c(x) in (a,x) such 
that  

    .
))(('
))(('

)()(
)()(

)(
)(

xcG
xcF

aGxG
aFxF

xG
xF

=
−
−

=  

Because F = f and G =g on (a,b), this means that 

    .
))(('
))(('

)(
)(

xcg
xcf

xg
xf

=  

Since ,)( xxca <<  we know that 
    axc

ax
=

+→
)(lim  

so we can use the Substitution Theorem with y = c(x) to conclude that  

  .
)('
)('lim

)('
)('lim

))(('
))(('lim

)(
)(lim L

xg
xf

yg
yf

xcg
xcf

xg
xf

axayaxax
====

++++ →→→→
 

This proves the equation involving right-hand limit in (a). The results involving left-hand 
and two-sided limits are proved analogously. Part (b) is more difficult to prove, and we 
omit its proof. 

Example 1 Evaluate .31lim
0 x

x

x

−
→

 

Solution: Both the numerator and the denominator have the limit 0 as 0→x . Hence the 
quotient has the indeterminate form 0/0 at x = 0. By L‘Hôpital’s rule 

  3ln
1

3ln3lim31lim
00

−=
−

=
−

→→

x

x

x

x x
 

Example 2 Evaluate 
x

x
x 2cosln

)1ln(lim
2

0

−
→

 

Solution:  Observe that 
   xx

xx
2coslnlim0)1ln(lim

0

2

0 →→
==−   

thus by applying L‘Hôpital’s rule we get 

   ⎟
⎠
⎞

⎜
⎝
⎛

−
−

⋅
−

=
−

−
−

=
−

→→ x
x

xx
x
x

x
x

xx 2tan2
2

1
1lim

2tan2
1

2

2cosln
)1ln(lim 20

22

0
 

2
1)(coslim

2sin
lim

)2(cos
2sin

lim

1
1

1limsin,
2tan

lim

00

0

200

=⋅=

⎥⎦
⎤

⎢⎣
⎡ ⋅=

=
−

=

→→

→

→→

x
x

x

x
x

x
x

ce
x

x

xx

x

xx

 

Example 3 Evaluate .
/1
arctan)2/(lim
x

x
x

−
∞→

π
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Solution: Since ,2/arctanlim π=
∞→

x
x

we have 

 
x

x
xx

1lim0arctan
2

lim
∞→∞→

==⎟
⎠
⎞

⎜
⎝
⎛ −

π
 

Hence by L‘Hôpital’s rule we have 

  1
1

lim
/1

)1/(1lim
/1
arctan)2/(lim 2

2

2

2

=
+

=
−

+−
=

−
∞→∞→∞→ x

x
x

x
x

x
xxx

π
. 

 
In same limits we need to apply L‘Hôpital’s rule several times in succession. The next 
example is one. 

Example 4 Evaluate 
xx
xee xx

x 2sin2
2lim

0 −
−− −

→
 

Solution: The given quotient has the indeterminate form 0/0. By L‘Hôpital’s rule we have 

  
x

ee
xx
xee xx

x

xx

x 2cos22
2lim

2sin2
2lim

00 −
−+

=
−

−− −

→

−

→
 

provided the second limit exists. Because the last quotient has the indeterminate form 0/0, 
we apply L‘Hôpital’s rule again, to obtain 

  
x

ee
x

ee xx

x

xx

x 2sin4
lim

2cos22
2lim

00

−

→

−

→

−
=

−
−+

 

still the last quotient has the indeterminate form 0/0, hence applying the L‘Hôpital’s rule 
for third time we get 

  .
4
1

8
2

2cos8
lim

2sin4
lim

00
==

+
=

− −

→

−

→ x
ee

x
ee xx

x

xx

x
 

The Indeterminate Form ∞/∞ 
Our second version of L‘Hôpital’s rule involves limits with indeterminate form ∞/∞. We 
give it now, with out proof. 
Theorem 4.3 (L‘Hôpital’s rule)  
Let L be a real number or .∞−∞ or  
a. Suppose f and g are differentiable on (a,b) and .0)(' bxaforxg <<≠  If  

  L
xg
xfandorxgorxf

axaxax
=∞−∞=∞−∞=

+++ →→→ )('
)('lim,)(lim,)(lim  

then  

   
)('
)('lim

)(
)(lim

xg
xfL

xg
xf

axax ++ →→
==  

An analogous result holds if 
+→ax

lim is replaced by 
−→bx

lim or by ,lim
cx→

 where c is any number in 

(a,b). In the letter case f and g need not be differentiable at c. 
b. Suppose f and g are differentiable on ),( ∞a  and 0)(' ≠xg  for ax > . If  

 L
xg
xfandorxgorxf

xxx
=∞−∞=∞−∞=

∞→∞→∞→ )('
)('lim,)(lim,)(lim  

then  



 Prepared by Tibebe-selassie T/mariam 85

   
)('
)('lim

)(
)(lim

xg
xfL

xg
xf

xx ∞→∞→
==  

An analogous result holds if .limlim
−∞→∞→ xx

byreplacedis  

Evaluate 5   Evaluate .
sec1

tan4lim
)2/( x

x
x +−→ π

 

Solution: Observe that the limit has the indeterminate form ∞/∞. Then by L‘Hôpital’s 
rule we have 

  .
tan
sec4lim

tansec
sec4lim

sec1
tan4lim

)2/(

2

)2/()2/( x
x

xx
x

x
x

xxx −−− →→→
==

+ πππ
 

The last quotient again has the indeterminate form ∞/∞ at ;2/π=x  however, additional 
applications of L‘Hôpital’s rule always produce the form ∞/∞. In this case the limit may 
be found by using trigonometric identities to change the quotient as follows: 

   
xxx

x
x
x

sin
4

cos/sin
cos/4

tan
sec4

==  

Consequently  

  .4
1
4

sin
4lim

sec1
tan4lim

)2/()2/(
===

+ −− →→ xx
x

xx ππ
 

Example 6 Evaluate .lim 2

2

x
e x

x ∞→
 

Solution: Since the limit has the indeterminate form ∞/∞ by applying L‘Hôpital’s rule 
we have 

  .lim
2

2limlim
22

2

2

x
e

x
e

x
e x

x

x

x

x

x ∞→∞→∞→
==  

The last quotient has the indeterminate form ∞/∞, so we apply L‘Hôpital’s rule for a 
second time, to obtain 

   .
1

2limlim
22

∞==
∞→∞→

x

x

x

x

e
x

e
 

Particularly in a similar fashion we can show that 

    .lim nnumberrealeveryfor
x
e

n

x

x
∞=

∞→
 

Other Indeterminate Forms 
Various indeterminate forms, such as ,,,1,0,0 00 ∞−∞∞∞⋅ ∞ and can usually be 
converted into the indeterminate form 0/0 or ∞/∞ and then evaluated by one of the 
versions of L‘Hôpital’s rule given in Theorem 4.2 and 4.3. 
Example 7  Find xx

x
lnlim 2

0+→
 

Solution: Since −∞==
++ →→

xandx
xx

lnlim0lim
0

2

0
 the given limit is of the form 

∞⋅0 (more precisely, )).(0 −∞⋅  However, we can transform it into the indeterminate form 
∞/∞ by writing it as 

    20 /1
lnlim

x
x

x +→
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and apply the L‘Hôpital’s rule we get 

  .
/2
/1lim

/1
lnlimlnlim 3020

2

0 x
x

x
xxx

xxx −
==

+++ →→→
 

The last quotient has the indeterminate form ∞/∞; however, further application of 
L‘Hôpital’s rule would again lead to ∞/∞. In this case we simplify the quotient 
algebraically and find the limit as follows: 

  .0
2

lim
2

lim
/2
/1lim

2

0

3

030
=

−
=

−
=

− +++ →→→

x
x

x
x
x

xxx
 

Example 8 Find .lim
0

x

x
x

+→
 

Solution: The limit evidently has the indeterminate form 00 . But then since xxx ex ln=  
and consequently 

   .limlim ln

00

xx

x

x

x
ex

++ →→
=  

Since the exponential function is continuous, it follows that  

   .lim
)ln(lim

ln

0
0

xx
xx

x
xee +→

+
=

→
 

it the limit on the right side exists. But since 

   0)(lim
)/1(

)/1(lim
/1

lnlimlnlim
02000

=−=
−

==
++++ →→→→

x
x
x

x
xxx

xxxx
  

by L‘Hôpital’s rule,  
   .1limlim 0ln

00
===

++ →→
eex xx

x

x

x
 

Example 9 Show that e
x

x

x
=⎟

⎠
⎞

⎜
⎝
⎛ +

∞→

11lim  

Solution: Observe that the limit has the indeterminate form .1∞  As in example 8, since 
x

x
x

e
x

⎟
⎠
⎞

⎜
⎝
⎛ +

=⎟
⎠
⎞

⎜
⎝
⎛ +

11ln11 first let us evaluate 
x

x x
⎟
⎠
⎞

⎜
⎝
⎛ +

∞→

11lnlim . But in doing so we have 

     
x

x
x

x
x xx

x

x /1
)/11ln(lim11lnlim11lnlim +

=⎟
⎠
⎞

⎜
⎝
⎛ +=⎟

⎠
⎞

⎜
⎝
⎛ +

∞→∞→∞→
. 

This expression is now prepared for L‘Hôpital’s rule as the limit has 0/0 form. As a result  

 1
/11

1lim
/1

1
)/11(

1

lim
/1

)/11ln(lim 2

2

=
+

=
−

⎟
⎠
⎞

⎜
⎝
⎛−

+
=

+
∞→∞→∞→ xx

xx
x

x
xxx

. 

Thus  

    .1lim11lim 0
11ln

===⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛ +

∞→∞→
ee

x

x

x

x

x

x
 

Example 10 Find ⎟
⎠
⎞

⎜
⎝
⎛ −

−+→ xe xx

1
1

1lim
0

. 

Solution: The limit has the indeterminate form ∞−∞ ; however; if the difference is 
written as a single fraction, then 
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   .1lim1
1

1lim
00 xxe

ex
xe x

x

xxx −
+−

=⎟
⎠
⎞

⎜
⎝
⎛ −

− ++ →→
  

This gives us the indeterminate form 0/0. It is necessary to apply L‘Hôpital’s rule twice, 
since the first application leads to the indeterminate form 0/0. Thus, 

   
.

2
1

2
lim

1
1lim1lim

0

00

−=
+

−
=

−+
−

=
−

+−

+

++

→

→→

xx

x

x

xx

x

xx

x

x

exe
e

exe
e

xxe
ex

 

Exercise  
I  Find the limit 

1. 
1
1lim 4

6

1 −
−

−→ x
x

x
   2.  

1
1lim

1 −
−

→ n

m

x x
x

   3.  30

sinlim
x

xx
x

−
→

 

4.  
bx
ax

x sin
sinlim

0→
   5.  

x
x

x /1
/1tanlim

∞→
  6.  

x
x

x 3
)2(tanlim

1

0

−

→
 

7. 3

2

0

)2/(1lim
x

xxe x

x

−−−
→

 8. x

x
xe

−∞→
lim    9.  )1(lim 2 −−

∞→
xx

x
 

10. ⎟
⎠
⎞

⎜
⎝
⎛ ++

∞→ 2

531lim
xxx

  11. 
x

x x
⎟
⎠
⎞

⎜
⎝
⎛ −

∞→

11lim   12. ⎟
⎠
⎞

⎜
⎝
⎛ −

∞→ 3
1sin1lim 2 xx

x
 

13. ⎟
⎠
⎞

⎜
⎝
⎛

−
−

→ 1
1

ln
1lim

1 xxx
  14. x

x
x 2tan

4/
)(tanlim

π→
  15. ⎟

⎠
⎞

⎜
⎝
⎛ −

→ xxx 220 sin
11lim  

 
16. Why is the following “application” of L‘Hôpital’s rule invalid? 

  0
1

coslimsinlim
2/

1
2/2/

===
→→

x
x

x
xx πππ

  

17. Evaluate .)sin(1lim
0

2
30 ∫→

x

x
dtt

x
 

4.3 Implicit Differentiation Problems  
The following problems require the use of implicit differentiation. Implicit differentiation is 
nothing more than a special case of the well-known chain rule for derivatives. The majority 
of differentiation problems in first-year calculus involve functions y written EXPLICITLY as 
functions of x . For example, if  

 
then the derivative of y is  

 
However, some functions y are written IMPLICITLY as functions of x . A familiar example 
of this is the equation  

x2 + y2 = 25 ,  
which represents a circle of radius five centered at the origin. Suppose that we wish to find 
the slope of the line tangent to the graph of this equation at the point (3, -4) .  
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How could we find the derivative of y in this instance ? One way is to first write y explicitly 
as a function of x . Thus,  

x2 + y2 = 25 ,  
y2 = 25 - x2 ,  

and  

 
where the positive square root represents the top semi-circle and the negative square root 
represents the bottom semi-circle. Since the point (3, -4) lies on the bottom semi-circle given 
by  

,  
the derivative of y is  

,  
i.e.,  

.  
Thus, the slope of the line tangent to the graph at the point (3, -4) is  

.  
Unfortunately, not every equation involving x and y can be solved explicitly for y . For the 
sake of illustration we will find the derivative of y WITHOUT writing y explicitly as a 
function of x . Recall that the derivative (D) of a function of x squared, (f(x))2 , can be found 
using the chain rule :  

.  
Since y symbolically represents a function of x, the derivative of y2 can be found in the same 
fashion :  
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.  
Now begin with x2 + y2 = 25 . Differentiate both sides of the equation, getting  

D ( x2 + y2 ) = D ( 25 ) ,  
D ( x2 ) + D ( y2 ) = D ( 25 ) ,  

and  
2x + 2 y y’ = 0 ,  

so that  
2 y y’ = - 2x ,  

and  

,  
i.e.,  

.  
Thus, the slope of the line tangent to the graph at the point (3, -4) is  

.  
This second method illustrates the process of implicit differentiation. It is important to note 
that the derivative expression for explicit differentiation involves x only, while the derivative 
expression for implicit differentiation may involve BOTH x AND y .  
The following problems range in difficulty from average to challenging.  
Example 1  Assume that y is a function of x . Find y’ = dy/dx for x3 + y3 = 4 .  
SOLUTION: Begin with x3 + y3 = 4 . Differentiate both sides of the equation, getting  

D ( x3 + y3 ) = D ( 4 ) ,  
D ( x3 ) + D ( y3 ) = D ( 4 ) ,  

(Remember to use the chain rule on D ( y3 ) .)  
3x2 + 3y2 y’ = 0 ,  

so that (Now solve for y’ .)  
3y2 y’ = - 3x2 ,  

and  

 
Exercise 2 Assume that y is a function of x . Find y’ = dy/dx for (x-y)2 = x + y - 1 .  
SOLUTION:  Begin with (x-y)2 = x + y - 1 . Differentiate both sides of the equation, getting  

D (x-y)2 = D ( x + y - 1 ) ,  
D (x-y)2 = D ( x ) + D ( y ) - D ( 1 ) ,  

(Remember to use the chain rule on D (x-y)2 .)  

,  
2 (x-y) (1- y’) = 1 + y’ ,  

so that (Now solve for y’ .)  
2 (x-y) - 2 (x-y) y’ = 1 + y’ ,  
- 2 (x-y) y’ - y’ = 1 - 2 (x-y) ,  
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(Factor out y’ .)  
y’ [ - 2 (x-y) - 1 ] = 1 - 2 (x-y) ,  

and  

.  

Example 3 Assume that y is a function of x . Find y’ = dy/dx for .  

SOLUTION: Begin with . Differentiate both sides of the equation, 
getting  

,  

(Remember to use the chain rule on .)  

,  

,  
so that (Now solve for y’ .)  

,  

,  
(Factor out y’ .)  

,  
and  

 
Example 4 Assume that y is a function of x . Find y’ = dy/dx for y = x2 y3 + x3 y2 .  
SOLUTION: Begin with y = x2 y3 + x3 y2 . Differentiate both sides of the equation, getting  

D(y) = D ( x2 y3 + x3 y2 ) ,  
D(y) = D ( x2 y3 ) + D ( x3 y2 ) ,  

(Use the product rule twice.)  

,  
(Remember to use the chain rule on D ( y3 ) and D ( y2 ) .)  

,  
y’ = 3x2 y2 y’ + 2x y3 + 2x3 y y’ + 3x2 y2 ,  

so that (Now solve for y’ .)  
y’ - 3x2 y2 y’ - 2x3 y y’ = 2x y3 + 3x2 y2 ,  

(Factor out y’ .)  
y’ [ 1 - 3x2 y2 - 2x3 y ] = 2x y3 + 3x2 y2 ,  

and  



 Prepared by Tibebe-selassie T/mariam 91

.  
PROBLEM 5  Assume that y is a function of x . Find y’ = dy/dx for exy = e4x + e5y.  
SOLUTION: Begin with exy = e4x - e5y . Differentiate both sides of the equation, getting  

D(exy ) = D ( e4x + e5y ) ,  
D( exy ) = D ( e4x ) + D ( e5y ) ,  

exy D( xy ) = e4x D ( 4x ) + e5y D( 5y ) ,  
exy ( xy’ + (1) y ) = e4x ( 4 ) + e5y ( 5y’ ) ,  

so that (Now solve for y’ .)  
xexy y’ + y exy = 4 e4x + 5e5y y’ ,  
xexy y’ - 5e5y y’ = 4 e4x - y exy ,  

(Factor out y’ .)  
y’ [ xexy - 5e5y ] = 4 e4x - y exy ,  

and  

 
Example 6 Assume that y is a function of x . Find y’ = dy/dx for 

.  

SOLUTION: Begin with . Differentiate both sides of the 
equation, getting  

,  

,  

,  

,  
so that (Now solve for y’ .)  

,  

,  
(Factor out y’ .)  

,  

,  

,  
and  
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Example 7 Assume that y is a function of x . Find y’ = dy/dx for 22 yxx += . 

SOLUTION: Begin with 22 yxx += . Differentiate both sides of the equation, getting  

,  
1 = (1/2)( x2 + y2 )-1/2 D ( x2 + y2 ) ,  
1 = (1/2)( x2 + y2 )-1/2 ( 2x + 2y y’ ) ,  

so that (Now solve for y’ .)  

,  

,  

,  

,  
and  

.  

Exercise 8: Assume that y is a function of x . Find y’ = dy/dx for 22

3

+=
+
− x

xy
yx . 

SOLUTION: Begin with 22

3

+=
+
− x

xy
yx . Clear the fraction by multiplying both sides of 

the equation by y + x2 , getting  

)(2)( 22
2

3

xyxxy
xy
yx

++=+
+
−

 

or                                         x - y3 = xy + 2y + x3 + 2x2 .  
Now differentiate both sides of the equation, getting  

D ( x - y3 ) = D ( xy + 2y + x3 + 2x2 ) ,  
D ( x ) - D (y3 ) = D ( xy ) + D ( 2y ) + D ( x3 ) + D ( 2x2 ) ,  

(Remember to use the chain rule on D (y3 ) .)  
1 - 3 y2 y’ = ( xy’ + (1)y ) + 2 y’ + 3x2 + 4x ,  

so that (Now solve for y’ .)  
1 - y - 3x2 - 4x = 3 y2 y’ + xy’ + 2 y’ ,  

(Factor out y’ .)  
1 - y - 3x2 - 4x = (3y2 + x + 2) y’ ,  

and  
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.  
Class Work  

PROBLEM 9 : Assume that y is a function of x . Find y’ = dy/dx for 42
33 yx

y
x

x
y

=+ .  

Example 10 Find an equation of the line tangent to the graph of (x2+y2)3 = 8x2y2 at the 
point (-1, 1) .  
SOLUTION Begin with (x2+y2)3 = 8x2y2 . Now differentiate both sides of the equation, 
getting  

D (x2+y2)3 = D ( 8x2y2 ) ,  
3 (x2+y2)2 D (x2+y2) = 8x2 D (y2 ) + D ( 8x2 ) y2 ,  

(Remember to use the chain rule on D (y2 ) .)  
3 (x2+y2)2 ( 2x + 2 y y’ ) = 8x2 (2 y y’ ) + ( 16 x ) y2 ,  

so that (Now solve for y’ .)  
6x (x2+y2)2 + 6 y (x2+y2)2 y’ = 16 x2 y y’ + 16 x y2 ,  
6 y (x2+y2)2 y’ - 16 x2 y y’ = 16 x y2 - 6x (x2+y2)2 ,  

(Factor out y’ .)  
y’ [ 6 y (x2+y2)2 - 16 x2 y ] = 16 x y2 - 6x (x2+y2)2 ,  

and  

.  
Thus, the slope of the line tangent to the graph at the point (-1, 1) is  

,  
and the equation of the tangent line is  

y - ( 1 ) = (1) ( x - ( -1 ) )  
or  

y = x + 2  
Example 11 Find an equation of the line tangent to the graph of x2 + (y-x)3 = 9 at x=1.  
SOLUTION:  Begin with x2 + (y-x)3 = 9 . If x=1 , then  

(1)2 + ( y-1 )3 = 9  
so that  

( y-1 )3 = 8 ,  
y-1 = 2 ,  
y = 3 ,  

and the tangent line passes through the point (1, 3) . Now differentiate both sides of the 
original equation, getting  

D ( x2 + (y-x)3 ) = D ( 9 ) ,  
D ( x2 ) + D (y-x)3 = D ( 9 ) ,  

2x + 3 (y-x)2 D (y-x) = 0 ,  
2x + 3 (y-x)2 (y’-1) = 0 ,  

so that (Now solve for y’ .)  
2x + 3 (y-x)2 y’- 3 (y-x)2 = 0 ,  

3 (y-x)2 y’ = 3 (y-x)2 - 2x ,  
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and  

.  
Thus, the slope of the line tangent to the graph at (1, 3) is  

  
and the equation of the tangent line is  

y - ( 3 ) = (5/6) ( x - ( 1 ) ) ,  
or  

y = (7/6) x + (13/6) .  
Finally let us see how to find the second derivative of a function that is defined 

implicitly. 
Example 12 Find 25" 44 =+ yxify  
Solution: Differentiating the equation implicitly with respect to x, we get 
    0'44 33 =+ yyx  
solving for y’gives 

3

3

'
y
xy −=      (1) 

To find "y  we differentiate this expression for 'y  using the quotient rule and remembering 
that y is a function of x: 

  

6

2323

23

3333

3

3

)'3(3.

)(
)()("

y
yyxxy

y
yDxxDy

y
x

dx
dy

−
−=

−
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

 

If we now substitute Equation 1 into this expression we get 

  

7

44

7

62

6

3

3
2332

)(3)(3

33
"

y
xyx

y
xyx
y

y
xyxyx

y

+
−=

+
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

=
 

But the values of x and y must satisfy the original equation 2544 =+ yx . So that answer 

simplifies to  7

2

7

2

75)25(3"
y
x

y
xy −=−=  

Class Work 
1. Find the slope and concavity of the graph of x2y + y4 = 4 + 2x at the point (-1, 1) .  
2.Consider the equation x2 + xy + y2 = 1 . Find equations for y’ and y” in terms of x and y  
3.Find all points (x, y) on the graph of x2/3 + y2/3 = 8 (See diagram.) where lines tangent to  



 Prepared by Tibebe-selassie T/mariam 95

the graph at (x, y) have slope -1 . 

 
4.Find "y by implicit differentiation. 

a. 133 =+ yx  
b. 86 22 =++ yxyx  

c. .1=+ yx  

4.4  Application of the derivative  

4.4.1  Extrema of a function 
Definition 1 A function f has an absolute maximum at c if f©≥ f(x) for all x in D, where 
D is the domain of f. The number f© is called the maximum value of f on D. Similarly, f 
has an absolute minimum at c if f© ≤ f(x) for all x in D and the number f© is called the 
minimum value of f on D. The maximum and minimum values of are called the extreme 
values of f. 

Definition 2 A function f has a local maximum (or relative maximum) at c if there is an 
open interval I containing c such that f©≥ f(x) for all x in I. Similarly, f has a local 
minimum at c if there is an open interval I containing c such that f© ≤ f(x) for all x in I.  

Example 1  If f(x) = x2, then f(x) ≥ f(0) because x2 ≥ 0 for all x. therefore f(0) = 0 is the 
absolute (and local) minimum value of f. this corresponds to the fact that the origin is that 
lowest point on the parabola y = x2. However, there is no highest point on the parabola 
and so this function has no maximum value. 
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Example 2 From the graph of the function f(x) = x3 we see that this function has neither 
an absolute maximum value nor an absolute minimum value. In fact, it has no local 
extreme values either. 

Theorem 3 If f has a relative (local) extremum (that is, maximum or minimum) at c, and 
that )(' cf  exists, then 0)(' =cf . 

Definition 4 A number c in the domain of a function f is a critical number of f if either 
0)(' =cf  or )(' cf  does not exist. 

Example 3 Find the critical numbers of f .4)( 5/85/3 xxxf −=  
Solution The derivative of f is given by 

 5/2
5/35/2

5
812

5
8

5
12)('

x
xxxxf −

=−= −  

Therefore 0)(' =cf  if 12-8x = 0, that is, x = 3/2 and )(' xf does not exist when x =0. 
Thus the critical numbers are 3/2 and 0.// 
To find the absolute extreme value of a function on a closed interval a similar theorem to 
Theorem 3 is given bellow. 
Maximum-Minimum Theorem  
Theorem 5 Let f be continuous on a closed interval [a, b]. Then f has a maximum and a 
minimum value on [a, b]. 
Note that according to Maximum-Minimum Theorem an extreme value can be taken on 
more than once.  
The following Theorem will simplify our effort of searching for an extreme value on a 
closed interval.  
Theorem 6 Let f be defined on [a, b]. If an absolute extreme value of f on [a, b] occurs at 
a number c in (a, b) at which f has a derivative, then .0)(' =cf  
In using theorem 5 to find the extreme value we followthe three-step procedure bellow. 

1. Find the values of f at the critical numbers of f in (a,b) 
2. Find the values of f(a) and f(b). 
3. The largest of the values from steps 1 and 2 is the absolute maximum value; the 

smallest of these values is the absolute minimum value. 
Example 4 Find the absolute maximum and minimum values of the function 
    323)( 2

123 ≤≤+−= xxxxf  
Solution: Since f is continuous on [-½,3], we can use the procedure outlined above: 
Since  
  )2(363)(' 2 −=−= xxxxxf   
Since )(' xf exists for all x, the only critical numbers of f occur when 0)(' =xf , that is,   x = 
0 or x = 2. Notice that each of these critical numbers lies in the interval [-½,3]. The values of 
f at these critical numbers are 
   f(0) = 2 f(2) = -3 
The values of f at the endpoints of the interval are 
   2)3()( 8

1
2
1 −==− ff  

Comparing these four numbers, we see that the absolute maximum value is f(0)=f(3)=2 
and the absolute minimum value is f(2) = –2. 
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Class Work  
1. Find the critical numbers of each function                a)  

f(x) = x3 – 6x +1  b) f(x)=|x| c) xcos  d) 
1

1)(
2 +

=
x

xf  

2. Find all extreme values (if any) of the given function on the given interval. Determine 
at which numbers in the interval these values occur.               a) 
f(x)=x2 – 2x + 2,  [0,3]         b) f(x)=x2 + 2/x ,  [1/2, 2] c) f(x)=x2/3

,  [-8,8]. 
3. Show that 0 is a critical number of the function f(x) =x5 but f does not have a local 

extremum at 0. 
4. Prove that the function f(x) = x51 + x21+x+1 has neither a local maximum nor a local 

minimum. 

4.4.2  The Mean Value Theorem 
Theorem 6 Let f be continuous on [a, b] and differentiable on (a, b). Then there is a 
number c in (a,b) such that 

    
ab

afbfcf
−
−

=
)()()('  

or, equivalently, 
   ))((')()( abcfafbf −=− . 
Example 5 Let 58)( 3 +−= xxxf . Find a number c in (0,3) that satisfies the Mean 
Value Theorem. 
Solution Since f is continuous on [0,3] and )(' cf  should satisfy the condition 

   1
3

58
03

)0()3()(' =
−

=
−
−

=
ffcf  

we seek a number c in (0,3) such that 1)(' =cf . But  
    83)(' 2 −= xxf  
so that c must satisfy  

3c2 –8 =1 
    3±=c  
Since )3,0(3 ∉− , the value of c that satisfies the mean value theorem in the interval 
(0,3) is 3 . 
Class Work 

1. Verify that the function bellow satisfies the hypothesis of the Mean Value Theorem 
on the given interval. Then find all numbers c that satisfy the conclusion of the Mean 
Value Theorem.                   

a) f(x)=1 –x2, [0, 3]  b) ]3,[,13)( 3
1⎟

⎠
⎞

⎜
⎝
⎛ +=

x
xxf  c) ]4,1[,)( xxf =  

2. Let f(x)=|x-1|. Show that there is no value of c such that f(3)-f(0)=f’©(3-0). Why 
does this not contradict the Mean Value Theorem? 

3. Show that the equation x5+10x+3=0 has exactly one real root. 
4. Show that the equation x4+4x+c=0 has at most two real roots. 
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4.4.3  First and Second Derivative Tests; Curve sketching  
I hope you remember that a function that is increasing or decreasing on an interval I 
is called monotonic on I and we used the test stated in the theorem bellow to identify 
whether a function is monotonic or not on a given interval. 

Theorem 7 Suppose f is continuous on [a,b] and differentiable on (a,b). 

a) If 0)(' >xf for all x in (a,b), then f is increasing on [a,b]. 
b) If 0)(' <xf for all x in (a,b), then f is decreasing on [a,b]. 

Theorem 7 lays the bases for the proof of the first derivative test stated as follows. 
Theorem 8 (The first derivative test) 
Suppose that c is a critical number of a continuous function f. 

a) If 'f  changes from positive to negative at c, then f has a local maximum at c. 
b) If 'f  changes from negative to positive at c, then f has a local minimum at c. 
c) If 'f  does not change sign at c (that is, 'f is positive on both sides of c or negative 

on both sides), then f has no local extremum at c. 
Example 6 Find the local extrema of )8(3/1 xx − and sketch its graph. 
Solution By the product rule we have 

  
3/23/2

3/13/2
3
1

3
)2(4

3
38

)8()('

x
x

x
xx

xxxxf
−

=
−−

=

−−= −

 

The derivative 0)(' =xf when x =2 more over 'f (x) does not exist when x = 0. So the 
critical numbers are 0 and 2. 
Bellow we give the sign chart for 'f (x). 
                                   0                                   2 
4(2-x) 
3x2/3 

'f (x) 
f 

               + 
               + 
               + 
f is increasing 

                + 
                + 
                + 
f is increasing 

                – 
                + 
                – 
 f is decreasing 
 

Then the function does not have an extreme value at 0. Since 'f  does not change sign at 
0. But f has a local maximum at 2 since 'f  changes sign from positive to negative and 
the local maximum value is given by f(2)=21/3(8 –2)= .263  Then using the sign chart and 
the extreme value we sketch the graph as bellow. 

                

2 0 2 4 6 8 10
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Class Work 
If )8()( 23/2 −= xxxf , find the local extrema, and sketch the graph of f. 
As the first derivative is useful to sketch the graph of a function the second derivative 
gives also additional information that enables us to sketch a better picture of the graph. 
The tests that we give below involve second derivative the student can consult advanced 
books for there proofs. 
Theorem 9 (The Test For Concavity) Suppose f is twice differentiable on an interval I. 

a) If 0)(" >xf  for all x in I, then the graph of f is concave upward on I. 
b) If 0)(" <xf  for all x in I, then the graph of f is concave downward on I. 

Definition 10 A point (a,b) on a curve is called a point of inflection if the curve changes 
from concave upward to concave downward or from concave downward to concave upward 
at (a,b). 
Example 7 Determine where the curve 133 +−= xxy  is concave upward and where it is 
concave downward. Find the inflection points and sketch the curve. 
Solution If 13)( 3 +−= xxxf , then 
  )1(333)(' 22 −=−= xxxf  
Since 0)(' =xf  when x2 = 1, the critical numbers are ±1. Also 

  
1110)('

11010)('
2

22

−<>⇔<⇔<

<⇔<⇔<−⇔<

xorxxxf

xxxxf
 

Therefore f is increasing on the interval (-∞, -1] and [1,∞) and is decreasing on [-1,1]. By 
the first derivative test, f(-1) = 3 is local maximum value and f(1) = -1 is a local minimum 
value. 

To determine the concavity we compute the second derivative: 
     xxf 6)(" =   
Thus 0)(" >xf  when x>0 and 0)(" <xf  when x<0. The Test for concavity then tells us 
that the curve is concave downward on (-∞, 0) and concave upward on (0, ∞). Since the 
curve changes from concave downward to concave upward when x = 0, the point (0, 1) is 
a point of inflection. We use this information to sketch the curve in Fig below. 
 

  

4 2 0 2 4

5

5

f x( ) x3 3x− 1+:=
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Another Application of the second derivative is in finding maximum and minimum 
values of a function. 
Theorem 11 Suppose "f is continuous on an open interval of a function. 

a) If 0)("0)(' >= cfandxf , then f has a local minimum at c. 
b) If 0)("0)(' <= cfandxf , then f has a local maximum at c. 

The graph on the right
illustrates these findings.

2 0

20

20

40

3 x4⋅ 8 x3⋅+ 4+

x

In the last case, x = 0 could still be a relative maximum, relative minimum
or neither; but the Second Derivative Test fails to produce any useful 
information.
If you used the First Derivative Test, you would find out that x = 0 is not 
relative extremum (there is an inflection point there instead).

The Second Derivative Test 
fails in this case.

f " (0) = 0 

Relative minimumf " ( - 2) = 48 > 0

Evaluate f " at the critical 
numbers where f ' = 0.

f " (x) = 36 x2⋅ 48 x⋅+
Find f ".

Critical numbers: x = 0, x = -2

(Note that the Second Derivative 
Test can only be applied at critical 
numbers where f '=0.)

12 x2⋅ x 2+( )⋅=
Find critical numbers of  f.f ' (x) = 12 x3⋅ 24 x2⋅+  

Solution

Use the Second Derivative Test to find relative extrema of  
f(x) = 3 x4⋅ 8 x3⋅+ 4+  .

 
Class Work 
Find (a) the intervals of increasing or decreasing, b) the local maximum and minimum 
values of the points of inflection. Then use this information to sketch the graph. 
a) f(x)=x3 –x   b) 1)( += xxxf   c) 3/23/1 )3()( += xxxf  

4.4.3 Curve Sketching 
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Now we apply the knowledge that we have developed in this chapter for sketching the 
graphs of different functions. The table below lists the items that are most important in 
graphing a function f. 

Property Test 
f has y intercept c 
f has x intercept c 

symmetric with respect to the
⎩
⎨
⎧

origin
axisy

 

 
f has a relative maximum value at c 
 
f has a relative minimum value at c 
 
f is strictly increasing on an open interval I 
f is strictly decreasing on an open interval I 
Graph of f is concave upward on I 
Graph of f is concave downward on I  
(c, f©) is an inflection point  
f has a vertical asymptote cx =  

f has a horizontal asymptote dx =  

 

f(0)=c 
f©=c 

)()(
)()(
xfxf

xfxf
−=−

=−
 

⎩
⎨
⎧

<=
−+=

0)("0)('
'0)('

cfandcf
vtovfromchangesfandcf

 

⎩
⎨
⎧

>=
+−=

0)("0)('
'0)('

cfandcf
vtovfromchangesfandcf

 

f’>0 for all except finitely many x in I 
f’<0 for all except finitely many x in I 

Ixxf ∈∀< 0)("  
Ixxf ∈∀> 0)("  

"f changes sign at c and usually 0)(" =cf  
±∞=±∞=

−+ →→
)(lim)(lim xforxf

cxcx
 

dxfordxf
xx

==
−∞→∞→

)(lim)(lim  

 

Example If 2

2

1
)(

x
xxg
−

= , discuss and sketch the graph of g. 

Solution:  
1. Analyze the first derivative.

This has a root at x = 0.  Possible 
local maximum or minimum here.g' x( )

2 x⋅

1 x2−( )2
:=

Notice that neither g(x) nor its derivative are defined at x = 1 and x = –1. 
The derivative is negative for x < 0, except at x = –1, where it is not 
defined. It is positive for x > 0, except at x = 1, where it is not defined.

2. Analyze the second derivative.

There are no values of x where 
the second derivative equals zero, 
so the graph of g has no inflection 
points.

g'' x( )
2 6 x2⋅+

1 x2−( )3
:=
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Range for graphingr 5− 4.99−, 5..:=

Put it all together.5.

g has vertical asymptotes at x = 1 and x = –1.

∞−simplifies to
1−x

x2

1 x2−
lim

−
→

∞simplifies to
1−x

x2

1 x2−
lim

+
→

∞simplifies to
1x

x2

1 x2−
lim

−
→

∞−simplifies to
1x

x2

1 x2−
lim

+
→

Since g is undefined at 1 and –1, examine the limits of g as x 
approaches these values.

Find vertical asymptotes.4.

h x( ) 1−:=  is a horizontal asymptote.

1−simplifies to
∞−x

x2

1 x2−
lim
→

1−simplifies to
∞x

x2

1 x2−
lim
→

Find horizontal asymptotes.3.

At x = 0, a critical number, the 
second derivative is positive, so the 
graph is concave up at this point, and 
has a local minimum.

g'' 0( ) 2=
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4 2 0 2 4

5

5

g r( )

h r( )

1− 1

r

Notice that all the aspects of the graph you found in your analysis 
are present:  a local minimum at x = 0, vertical asymptotes at x = 1 
and x = –1, a horizontal asymptote at y = –1, downward sloping 
when x < 0, upward sloping when x > 0.  

Class Work 
Discuss and sketch the graph of f if 

a) 
2

)( 2

2

−−
=

xx
xxf  b) 2)1(

)(
+

=
x

xxf    c)
1

2)(
2 +

=
x

xxf     d) 
53

12)(
2

−
+

=
x
xxf  

Note your sketch should look like one of the graphs bellow. 
 

4 2 0 2 4

4

2

2

4

10 5 0 5 10

5
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5 0 5 10

5

10 0 10

5

5

 
 
 

5 Review of Techniques of Integration 
5.0  Introduction 

Before we see techniques of integration let us revise the integrals of important functions in 
the following table. 

 Derivative Indefinite integral 
1)( =xDx  1. cxdxdx +== ∫∫1  

)1(
1

1

−≠=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+

rx
r
xD r

r

x  2. )1(
1

1

−≠+
+

=
+

∫ rc
r
xdxx

r
r  

xxDx cos)(sin =  3. cxxdx +=∫ sincos  

xxDx sin)cos( =−  4. cxxdx +−=∫ cossin  

xxDx
2sec)(tan =  5. cxxdx +=∫ tansec2  

xxDx
2csc)cot( =−  6. cxxdx +−=∫ cotcsc2  

xxxDx tansec)(sec =  7. cxxdxx +=∫ sectansec  

xxxDx cotcsc)csc( =−  8. cxxdxx +−=∫ csccotcsc  
xx

x eeD =)(  9. cedxe xx +=∫  

x
x

x a
a

aD =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ln

 10. c
a

adxa
x

x +=∫ ln
 

x
xDx

1)(ln =  11. cxdx
x

+=∫ ln1
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221

11 1)()(sin
2

2

xa
DD a

x
xa

x
x

a

x −
==

−

−  12. c
a
xdx

xa
+=

−
−∫ 1

22
sin1  

221

11 1)()(cos
2

2

xa
DD a

x
xa

x
x

a

x −
−=−=

−

−  13. c
a
xdx

xa
+−=

−
−∫ 1

22
cos1  

222
1 1)(

)(1
1)1()tan1(

xaa
xD

aa
x

a
D x

a
xx +

=
+

=− 14. c
a
x

a
dx

xa
+=

+
−∫ 1

22 tan11
 

22

1 1sec1
axxa

x
a

Dx
−

=⎟
⎠
⎞

⎜
⎝
⎛ −  15. c

a
x

a
dx

axx
+=

−
−∫ 1

22
sec11  

       Table 1.0 
I hope the student does not forget how to evaluate the definite integral by using the 

following fundamental theorem of calculus: 

Theorem 1.0 (Fundamental theorem of calculus) 
Suppose f is continuous on a closed interval [a,b]. 
Part I  If the function G is defined by      

                                                        ∫=
x

a

dttfxG )()(   

for every x in [a,b], then G is an antiderivative of f on [a,b]. 
Part II  If F is any antiderivative of f on [a,b], then  

   .)()()(∫ −=
b

a

aFbFdxxf  

Example 1.0   Evaluate .)56(
3

2

2∫
−

− dxx  

Solution: An antiderivative of 56 2 −x is .52)( 3 xxxF −=  Then 

  

.45)]2(5)2(2[)]3(5)3(2[

52)56(

33

3

2

3

2

32

=−−−−−=

−=−∫
−

−
xxdxx

 

5.1 Integration by Substitution 
The formulas for indefinite integrals in Table (1.0) are limited in scope, because we 
cannot use them directly to evaluate such as   

   ∫ ∫− xdxordxx 3sin52  

In this section we shall develop a simple but powerful method for changing the variable 
of integration so that these integrals (and many others) can be evaluated by using the 
formulas in Table (1.0). 
Method of Substitution  
If the integral to be evaluated is of the form  
  ∫ dxxgxgf )('))((  

we substitute )(xgu = and ,)(' dxxgdu = then the integral becomes ∫ .)( duuf   
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Example 1   Evaluate ∫ − .52 dxx  
Solution: We let u = 2x – 5 and calculate du: 

u = 2x – 5 , du = 2dx 
Since du contains the factor 2, the integral is not in the proper form ∫ duuf )( required in 
the method of substitution given above. However, we can introduce the factor 2 into the 
integrand, provided we also multiply by 2

1 . Doing this and property of integral we have 

  
∫

∫∫
−=

−=−

dxx

dxxdxx

252

25252

2
1

2
1

 

We now substitute and use the power rule for integration: 

  

cx

cu

cu

duu

duudxx

+−=

+=

+=

=

=−

∫
∫∫

2
3

2
3

2
3

2
1

)52(

52

3
1

3
1

2
32

1

2
1

2
1

 

Example 2   Evaluate ∫ .2sin xdx  
Solution: We make the substitution  

  dxduxu 2,2 == . 
Since du contains the factor 2, we adjust the integrand by multiplying by 2 and 
compensate by multiplying the integral by 2

1  before substituting: 

  

cx
cu

duu

dxxxdx

+−=

+−=

=

=

∫
∫∫

2cos
cos

sin

2)2(sin2sin

2
1
2
1

2
1

2
1

 

It is not always easy to decide what substitution u = g(x) is needed to transform an 
indefinite integral into a form that can be readily evaluated. It may be necessary to try 
several different possibilities before finding a suitable substitution. In most cases no 
substitution will simplify the integrand properly. The following guidelines may be 
helpful. 
Guidelines for changing variables in indefinite integrals 

1. Decide on a reasonable substitution u = g(x). 
2. Calculate .)(' dxxgdu =  
3. Using 1 and 2, try to transform the integral into a form that involves only the variable 

u. If necessary, introduce a constant factor k into the integrand and compensate by 
1/k. If any part of the resulting integrand contains the variable x, use a different 
substitution in 1. 

4. Evaluate the integral obtained in 3, obtaining an antiderivative involving u. 
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5. Replace u in the antiderivative obtained in guideline 4 by g(x). The final result should 
contain only the variable x. 

The following examples illustrate the use of the guidelines. 
Example 3  Evaluate ∫ + dxxx 1032 )23( . 

Solution: If an integrand involves an expression raised to a power, such as 103 )23( +x , 
we often substitute u for the expression. Thus, we let 
  .9,23 2

9
123 dxxdudxxduxu =⇔=+=  

Comparing xdxdu 9=  with dxx 2 in the integral suggests that we introduce the factor 9 
into the integrand. Doing this and compensating by multiplying the integral by 1/9, we 
obtain the following: 

  

.)23(

119
1

)23(

112
99
1

11

10
9
1

9
1101032

cx

cu

duu

duudxxx

++=

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=

=+

∫
∫∫

 

Example 4   Evaluate ∫ − .13 dxxx  

Solution: To simplify the expression 13 −x , we let 
   .3,13 dxduthatsoxu =−=   
Then 

  
}

duu

dxxxdxxx
3
1

1313 ∫∫ −=−
876

 

Thus we still need to find x in terms of u. From the equation u=3x –1 we deduce that 

   )1(
3
1

+= ux . 

Therefore  

  

} }

cuu

duuu

duuudxxxdxxx
duuu

+⎟
⎠
⎞

⎜
⎝
⎛ +=

⎟
⎠
⎞⎜

⎝
⎛ +=

+=−=−

∫
∫∫∫

+

2
3

2
5

2
1

2
3

9
1

3
1

3
1

)1(

3
2

5
2

9
1

)1(1313
3
1

3
1 876

 

    .)13(
27
2)13(

45
2 2

3
2

5
cxx +−+−=  

Sometimes there is more than one substitution that will work. For instance, in Example 4 
we could have let 13 −= xu , then )1(13 2

3
12 +=−= uxorxu  and  

 ,32 3
2 dxudusodxudu ==  

As a result, 
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}

.)13(
27
2)13(

45
2

)()(

)1(

)1(1313

2
3

2
5

3
3
15

5
1

9
224

9
2

22
9
2

3
22

3
1

3
2

)1( 2
3
1

cxx

cuuduuu

duuu

uduuuuduxxdxxx
uu

+−+−=

++=+=

+=

+=−=−

∫
∫

∫∫ ∫
+ 876

 

Even though we used a different substitution, the final answer remains the same. Example 5   
Evaluate dxxex∫

2

 
Solution: We let   
   .2,2 xdxduthatsoxu ==  
Then  

  

}}

.
2
1
2
1

2

2
1

22

2
1

ce

ce

duexdxedxxe

x

u

u

due

xx

u

+=

+=

== ∫∫∫
 

Example 6   Evaluate ∫ + .)ln1(1 4 dxx
x

 

Solution: We let  

  .1,ln1 dx
x

duthansoxu =+=  

Then 

  ∫ ∫ ++==+ .)ln1(
5
1)ln1(1 544 cxduudxx

x
 

Example 7   Evaluate ∫ .tan xdx  
Solution: First write the integral in the following form 

   ∫ ∫= .
cos
sintan dx

x
xxdx  

Now let .sin,cos xdxduthatsoxu −==  

Then   ∫ ∫ ∫ +−=+−=−== .coslnln)(1
cos
sintan cxcudu

u
dx

x
xxdx  

Example 8   Evaluate ∫ .sec xdx  

Solution: We first put the integral in the form 

∫ ∫∫ +
+

=
+
+

= dx
xx

xxxdx
xx
xxxxdx

tansec
tansecsec

tansec
tansecsecsec

2

 

If we now let ,)sectan(sec,tansec 2 dxxxxduthatsoxxu +=+=  then 
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.tansecln

ln1
tansec

tansecsecsec
2

cxx

cudu
u

dx
xx

xxxxdx

++=

+==

+
+

=

∫

∫∫

 

Example 9   Evaluate ∫
−

.
1 4

2

dx
e

e
x

x

 

Solution: The integral may be written as in the first formula 12 of table 1.0 by letting a=1 
and using the substitution 
   .2, 22 dxedueu xx ==  
Then  

  .sin
2
1sin

2
1

1
1

2
1

1
211

24

2

cecudu
u

dx
e

e x

x

x

+=+=
−

=
−

−−∫ ∫  

Example 10   Evaluate ∫
2/

0

4cossin
π

xdxx  

Solution: Let xdxduthenxu sin,cos −==  hence  

  

.
5
10cos

5
1

2
cos

5
1

cos
5
1

5
1)(cossin

55

0

554
2/

0

4
2

=+−=

−=−=−= ∫∫
π

ππ

xuduuxdxx
 

Exercise 1.2 Evaluate the following integrals. 
1.   ∫ xdx2sin      2.   ∫ xdxcsc  

3.   dx
x

x
∫ + 32 )5(

    4.  dx
x

x
∫

−3 221
 

5.   dxxx∫ −125     6.   dt
t
t

∫
− +

2

1

2

2
 

7.   ∫
2

1
2

3

dx
x
e x

     8.   dx
xx∫ 2)(ln

1
 

9.   ∫ +
dx

x
x

cos21
sin3     10. dx

x
x

∫
−

2/2

0
41

 

5.2  Integration by parts 
If we try to evaluate integrals of the type  

  ∫ ∫ xdxanddxxex ln,  

by using the method of substitution we obviously fail. But don’t worry the next formula 
will enable us to evaluate not only these, but also many other types of integrals. 
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Integration by parts formula 
If )()( xgvandxfu == and if '' gandf are continuous, then 

∫∫ −= dxxfxgxgxfdxxgxf )(')()()()(')(  or using u and v 

   ∫ ∫−= .vduuvudv  

Proof    By the product rule, 
  )(')()()(')]'()([ xgxfxgxfxgxf +=  
or equivalently, ).(')()]'()([)(')( xfxgxgxfxgxf −=  
Integrating both sides of the last equation gives us 
  .)(')()]'()([)(')( ∫∫∫ −= dxxfxgdxxgxfdxxgxf  

The first integral on the right side equals f(x)g(x)+c. Since another constant of integration 
is obtained from the second integral, we may omit c in the formula; that is  

.)(')()()()(')( dxxfxgxgxfdxxgxf ∫∫ −=     (1) 
Since dxxgdv )('= and ,)(' dxxfdu = we may write the preceding formula as  
  ∫∫ −= .vduuvudv  

Since applying (1) involves splitting the integrand into two parts, the use of (1) is referred 
to as integrating by parts. A proper choice for dv is crucial. We usually let dv equal the 
most complicated part of the integrand that can be readily integrated. The following 
examples illustrate this method of integration. 
Example 1   Evaluate .dxxex∫  

Solution:  The integrand xxe can be split into two parts x and xe . We let 
  dxedvandxu x==    

Then  ∫ === xx edxevandxdu  
Consequently integration by parts yields 

 
}} }} }}

.cexedxeexdxex xx
duv

x
v
x

udv
x

u

+−=−= ∫∫  

Example 2 Evaluate  

a)  ∫ xdxx 2sec    b)  ∫
3/

0

2sec
π

xdxx  

Solution: a) We let here 
  xdxdvandxu 2sec==  

then  xvanddxdu tan== . 
Hence integration by parts yields 

  
.coslntan

)cosln(tantantansec2

cxxx

cxxxxdxxxxdxx

++=

+−−=−= ∫∫  

b) The indefinite integral obtained in part (a) is an antiderivative of .sec2 xx  Using the 
fundamental theorem of calculus (and dropping the constant of integration c), we 
obtain 
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[ ]

.2ln3
3

)00(
2
1ln3

3

)1ln0(
3

cosln
3

tan
3

coslntansec 3/

0

3/

0

2

−=

+−⎟
⎠
⎞

⎜
⎝
⎛ +=

+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

+=∫

π

π

πππ

π
π

xxxxdxx

 

Example 3   Evaluate ∫ .ln xdx  

Solution:  Let       dxdvandxu == ln  

Then   xvanddx
x

du ==
1

 

and integrating by parts yields: 

  .lnln)1(lnln cxxxdxxxdx
x

xxxxdx +−=−=−= ∫∫ ∫  

Sometimes it is necessary to usse integration by parts more than once in the same 
problem. This is illustrated in the next example. 

Example 4   Evaluate .2sin
2/

0

2∫
π

xdxx  

Solution:  Let  
  xdxdvandxu 2sin2 ==  

Then   xvandxdxdu 2cos
2
12 −== . 

Thus using integration by parts we have; 

  

dxxxxx

dxxxxxxdxx

∫

∫∫

+⎥⎦
⎤

⎢⎣
⎡−=

⎟
⎠
⎞

⎜
⎝
⎛−−⎥⎦

⎤
⎢⎣
⎡−=

2/

0

2/

0

2

2/

0

2/

0

2
2/

0

2

2cos2cos
2
1

2cos
2
122cos

2
12sin

ππ

πππ

 

but then since 

  
8

0)(2cos
22

12cos
2
1 2

2

22/

0

2 ππ π
π

=−⎟
⎠
⎞

⎜
⎝
⎛−=⎥⎦

⎤
⎢⎣
⎡− xx  

and 
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2
1]11[

4
10cos)

2
(2cos

4
1

2
2cos

2
10)

2
(2sin

22
1

2
2sin

2
2sin2cos

2/

0

2/

0

2/

0

2/

0

−=−−=⎥⎦
⎤

⎢⎣
⎡ −=

⎥⎦
⎤

⎢⎣
⎡−−⎥⎦

⎤
⎢⎣
⎡ −=

−⎥⎦
⎤

⎢⎣
⎡= ∫∫

π

ππ π

πππ

x

dxxxxdxxx

 

Hence,  

  .
2
1

8
2sin

22/

0

2 −=∫
ππ

xdxx  

The following example illustrates another device for evaluating an integral by means of 
two applications of the integration by parts formula. 

Example 5   Evaluate .cos xdxe x∫  

Solution: We could either let xdxdv cos=  or let ,dxedv x=  since each of these 
expression is readily integrable. Let us choose 
   xdxdvandeu x cos==  
so that   xvanddxedu x sin==  
Then by integrating by parts we have; 

∫∫ −= .sinsincos xdxexexdxe xxx     (1) 

We next apply integration by parts to the integral of the right side of equation (1). Since 
we chose a trigonometric form for dv in the first integration by parts, we shall also choose 
a trigonometric form for the second. Letting  

  
xvanddxedu

thatsoxdxdvandeu
x

x

cos
sin

−==

==
 

integrating by parts, we have 
  ∫ ∫ −−−= dxexxexdxe xxx )cos()cos(sin  

.coscossin∫ ∫+−= xdxexexdxe xxx    (2) 

If we now use equation (2) to substitute on the right side of equation (1), we obtain 
  [ ]∫∫ +−−= xdxexexexdxe xxxx coscossincos  

or  ∫∫ −+= xdxexexexdxe xxxx coscossincos . 

Adding ∫ xdxe x cos  to both sides of the last equation gives us 

  ).cos(sincos2 xxexdxe xx +=∫  

Finally, dividing both sides by 2 and adding the constant of integration yiels 

  .)cos(sin
2
1cos cxxexdxe xx ++=∫  

We could have evaluated the given integral by using dxedv x= for both the first and 
second applications of the integration by parts formula. 



 Prepared by Tibebe-selassie T/mariam 113

In conclusion we remark that integration by parts is effective with integrals involving a 
polynomial and either an exponential, a logarithmic, or a trigonometric function. More 
specifically, integration by parts is especially well adapted to integrals of the form 

  
.ln)(,)(

,cos)(,sin)(

∫∫
∫∫

xdxpolynomialdxepolynomial

axdxpolynomialaxdxpolynomial
ax

 

In all except ∫ xdxpolynomial ln)( , the most effective choice of u is the polynomial, 
since the derivatives of a polynomial are simpler than the polynomial itself, while the 
choice xu ln=  is effective for ∫ xdxpolynomial ln)( . 

Example 6   Evaluate ∫ − .sin 1 xdx  
Solution: Let  

dxdvandxu == −1sin  so that xvanddx
x

du =
−

=
21

1 . 

Then  

  ∫∫
−

−= −− dx
x

xxxxdx
2

11

1
sinsin  

Now we use substitution to solve the integral to the right. That is let 
  xdxwdwthatsoxworxw 2211 222 −=−=−=  
we then have 

  cxcwdw
w

wdwdx
x

x
+−−=+−=−=−=

−
∫ ∫∫ 2

2
1

1
 

Consequently 
  .1sinsin 211∫ +−+= −− cxxxxdx  
 

Integration by parts may sometimes be employed to obtain reduction formulas for 
integrals. We now find reduction formulas of ∫∫ xdxandxdx nn cossin  with the help of 
integration by parts. 

Example 7   Find a reduction formula for ∫ .sin xdxn  

Solution:  First write ∫∫ −= xdxxxdx nn sinsinsin 1  and let 

xdxdvandxu n sinsin 1 == −  so that  

  xvandxdxxndu n coscossin)1( 2 −=−= −  
then using  integration by parts we have: 
  ∫∫ −− −+−= xdxxnxxxdx nnn 221 cossin)1(sincossin   

since ,sin1cos 22 xx −= we may write 

∫ ∫∫ −−−+−= −− .sin)1(sin)1(sincossin 21 xdxnxdxnxxxdx nnnn  
Consequently, 
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 .sin)1(sincos.sin)1(sin 21 ∫∫∫ −− −+−=−+ xdxnxxxdxnxdx nnnn  

The left side of the last equation reduces to ∫ xdxn nsin . Dividing both sides by n, we 
obtain 

 .sin1sincos1sin 21 ∫∫ −− −
+−= xdx

n
nxx

n
xdx nnn  

In a similar fashion we can show the reduction formula for ∫ xdxncos  is given by: 

 .cos1cossin1cos 21 ∫∫ −− −
+= xdx

n
nxx

n
xdx nnn  

Example 8   Evaluate ∫ .sin 5 xdx  
Solution:  Using the reduction formula for sine with n = 5 gives us  

  ∫∫ +−= xdxxxxdx 345 sin
5
4sincos

5
1sin  

A second application of the reduction formula, to ∫ xdx5sin , yields 

  

1
2

23

cos
3
2sincos

3
1

sin
3
2sincos

3
1sin

Cxxx

xdxxxxdx

+−−=

+−=∫ ∫
 

Consequently 

  
.cos

15
8sincos

15
4sincos

5
1

cos
3
2sincos

3
1

5
4sincos

5
1sin

24

1
245

Cxxxxx

Cxxxxxxdx

+−−−=

⎟
⎠
⎞

⎜
⎝
⎛ +−−+−=∫

 

Exercise 1.2 
Evaluate the integral 
1.  ∫ − dxxe x     2.  ∫ xdxx ln  

3.  ∫ xdx3sec     4.  ∫ dxx x2  

5.  ∫ xdxxx sectan    6.  ∫
2/

0

2sin2
π

tdtt  

7.  ∫ ++ dxxx )2()1( 10   8.  ∫ dxx)sin(ln  (Hint: Let )sin(ln xu = ) 

9.  ∫ − xdx1tan     10.  dxx∫ cos  
Evaluate the integral with the help of the reduction formulas 

11. ∫
2/

0

3

2
cos

π

dxx    12.  ∫ xdx5cos  

5.3  Integration by Partial Fractions 
An expression for rational function is called a proper fraction if the degree of the 

numerator is strictly less than the degree of the denominator; otherwise it is called an 
improper fraction. In case of improper fraction we actually divide the numerator by the 
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denominator and the improper fraction is expressed in terms of a polynomial and a proper 
fraction. For example, 

3
72

3
12

−
+=

−
+

xx
x   and   

9
263434

9
1234

22

23

+
−

−−=
+

−+−
x
xx

x
xxx

 

Let us consider a proper fraction 
)(
)(

xQ
xP  where P and Q are polynomials in x, then it can 

be proved that  

   rFFF
xQ
xP

+++= L21)(
)(

 

Such that each term kF  of the sum has one of the forms  

   nn cbxax
BAxor

bax
A

)()( 2 ++
+

+
 

for real numbers A and B and a nonnegative integer n, where cbxax ++2 is irreducible 
in the sense that this quadratic polynomial has no real zeros (that is, ).042 <− acb  In this 
case, cbxax ++2  cannot be expressed as a product of two first-degree polynomials with 
real coefficients. 

The sum rFFF +++ L21  is the partial fraction decomposition of P(x)/Q(x), and each 

kF  is a partial fraction. We state guidelines for obtaining this decomposition. 

Guidelines for partial fraction decompositions of P(x)/Q(x) 
1. If the degree of P(x) is not lower than the degree of Q(x), use long division to obtain 

the proper form. 
2. Express Q(x) as a product of linear factors ax + b or irreducible quadratic factors 

cbxax ++2 , and collect repeated factors so that Q(x) is a product of different factors 
of the form nbax )( + or ncbxax )( 2 ++  for a nonnegative integer n. 

3. Apply the following rules.             
Rule a   For each factor nbax )( +  with ,1≥n  the partial fraction decomposition 
contains a sum of n partial fractions of the form   

        n
n

bax
A

bax
A

bax
A

)()( 2
21

+
++

+
+

+
L  

where each numerator Ak is a real number. 

Rule b For each factor ncbxax )( 2 ++  with ,1≥n and with cbxax ++2  irreducible, 
the partial fraction decomposition contains a sum of n partial fractions of the form  

   ,
)()( 222

22
2

11
n

nn

cbxax
BxA

cbxax
BxA

cbxax
BxA

++
+

++
++

+
+

++
+

L  

where each Ak and Bk is a real number. 

Example 1  Evaluate ∫ −+
−+ .
32
9134

23

2

dx
xxx

xx
 

Solution: We may factor the denominator of the integrand as follows: 
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  )1)(3()32(32 223 −+=++=−+ xxxxxxxxx  
Each factor has the form stated in Rule (a) of the guideline, with n = 1. Therefore the 

partial fraction decomposition has the form 

  .
13)1)(3(

9134 2

−
+

+
+=

−+
−+

x
C

x
B

x
A

xxx
xx

 

Multiplying by the LCM of the denominators gives us  

 ).3()1()1)(3(9134 2 ++−+−+=−+ xCxxBxxxAxx   (*) 
In a case such as this, in which the factors are linear and nonrepeated, the values of A, 

B and C can be found by substituting values for x that make the various factors zero. If 
we let x = 0 in (*), then 

   .3,39 =−=− AorA  
Letting x = 1 in (*) gives us  

   .2,48 == CorC  
Finally, if x = -3 in (*), we have  

   .1,1212 −==− BorB  
The partial fraction decomposition is, therefore, 

  .
1

2
3

13
32
9134

23

2

−
+

+
−

+=
−+
−+

xxxxxx
xx

 

Integrating and letting C denote the sum of the constants of integration we have 

  ∫ ∫ ∫∫ −
+

+
−

+=
−+
−+ .

1
2

3
13

)1)(3(
9134 2

dx
x

dx
x

dx
x

dx
xxx
xx

 

        

.
3

)1(ln

1ln3lnln

1ln23lnln3

23

23

C
x
xx

Cxxx

Cxxx

+
+
−

=

+−++−=

+−++−=

 

Another technique for finding A, B, and C is to expand the right-hand side of (*) and 
collect like powers of x as follows: 

  AxCBAxCBAxx 3)32()(9134 22 −+−+++=−+  
We now use the fact that if two polynomials are equal, then coefficients of like powers 

of x are the same. It is convenient to arrange our work in the following way, which we 
call comparing coefficients of x. 

   Coefficients of x2: 4=++ CBA  
   Coefficients of x: 1332 =+− CBA  
   Constant terms: - 3A              = -9 
We may show the solution of this system of equations is A = 3, B = -1, and C = 2. 

Example 2   Evaluate ∫ −+
− dx

xx
x

3)1)(2(
713  

Solution: By Rule (a) of the Guidelines the partial fraction of the integrand has the form 
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2)1()1(1)1)(2(

713
323 +

+
−

+
−

+
−

=
−+

−
x

D
x

C
x

B
x

A
xx

x
 

Multiplying both sides by 3)1)(2( −+ xx  gives us 
 32 )1()2()2)(1()2()1(713 −++++−++−=− xDxCxxBxxAx       (*) 
Two of the unknown constants may be determined easily as follows. 
Let x = 1 in (*) the we obtain  )21(713 +=− C    or     C=2. 
Similarly, letting x = -2 in (*) yields .1)12(1413 3 −=−−=+ DorD  
The remaining constants may be found by comparing coefficients. So comparing the 
coefficients of x3 on both sides of (*), gives 

0=A+D or A = - D = 1. 
And comparing the constant terms on both sides of (*), gives 

 .3)13142(
2
122213 −=−++=−+−= BorDCBA  

Therefore 

  .
2

1
)1(

2
)1(

3
1

1
)1)(2(

713
323 +

−
+

−
+

−
−

+
−

=
−+

−
xxxxxx

x
 

Thus  

 

.
)1(

1
1

3
2
1ln

2ln
)1(

1
1

31ln

2
1

)1(
2

)1(
3

1
1

)1)(2(
713

2

2

323

C
xxx

x

Cx
xx

x

dx
x

dx
x

dx
x

dx
x

dx
xx

x

+
−

−
−

+
+
−

=

++−
−

−
−

+−=

+
−

−
+

−
−

−
=

−+
−

∫ ∫∫ ∫∫

 

Example 3   Evaluate ∫ −+
++ .

2
72

23

2

dx
xx

xx  

Solution:  The denominator of the integrand may be factored as follows: 
 )22)(1(2 223 ++−=−+ xxxxx  
Applying Rule (b) of the Guidelines to the irreducible quadratic factor 222 ++ xx  we 
have 

  
2212

72
223

2

++
+

+
−

=
−+
++

xx
CBx

x
A

xx
xx

  

This leads to  
 )1)(()22(72 22 −++++=++ xCBxxxAxx    (*) 
As in previous examples, substituting 1=x  in (*) gives us 

10 = A(5)   or   A = 2  
The remaining constants may be found by combining like powers of x: 
 )4()4()2(72 22 CxBCxBxx −+−+++=++    (**) 
and comparing coefficients in (**). 
  Coefficients of x2: 1 = 2 + B  or   B = -1 
      Constant terms: 7=4-C       or   C = -3 
Thus the partial fraction decomposition of the integrand is 
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  .
22

3
1

2
2
72

223

2

++
−−

+
−

=
−+
++

xx
x

xxx
xx

 

Consequently  

  ∫ ∫∫ ++
+

−
−

=
−+
++ dx

xx
xdx

x
dx

xx
xx

22
3

1
2

2
72

223

2

 

To evaluate the right-hand integral, we first complete the square in the denominator to 
obtain 1)1(22 22 ++=++ xxx  
and substitute  ,1+= xu  so that du = dx  and x +3 = u + 2 
Therefore 

  

.)1arctan(2)1)1ln((
2
1

arctan2)1ln(
2
1

1
12

1
2

2
1

1
12

1

1
2

1)1(
3

22
3

2

2

22

22

222

Cxx

Cuu

du
u

du
u

u

du
u

du
u

u

du
u
udx

x
xdx

xx
x

+++++=

+++=

+
+

+
=

+
+

+
=

+
+

=
++

+
=

++
+

∫ ∫

∫ ∫

∫ ∫∫

  

Hence 

 
Cxxx

dx
xx

xdx
x

dx
xx

xx

++−++−−=
++

+
−

−
=

−+
++

∫ ∫∫
)1arctan(2)1)1ln((1ln2

22
3

1
2

2
72

2
2
1

223

2

 

Example 4   Evaluate .
)1(

3735
22

23

dx
x

xxx
∫ +

−+−
 

Solution:  Applying Rule b) of the Guidelines, with n = 2, yields 

  .
)1(1)1(

3735
22222

23

+
+

+
+
+

=
+

−+−
x

DCx
x

BAx
x

xxx
 

Multiplying by both sides of the equation by 22 )1( +x  gives 

 
)()(3735

)1)((3735
2323

223

DBxCABxAxxxx
DCxxBAxxxx

+++++=−+−

++++=−+−
 

We next compare coefficients as follows: 
  coefficients of x3:  5 = A 
  coefficients of x2: -3 = B 
  coefficients of x :  7 = A + C  or C = 2 
     constant terms : -3 = B + D  or D = 0 
Therefore 

   22222

23

)1(
2

1
35

)1(
3735

+
+

+
−

=
+

−+−
x

x
x
x

x
xxx   

so that  
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.

1
1)1arctan(3)1ln(

2
5

)1(
2

1
3

1
5

)1(
3735

2
22

222222

23

C
x

xx

dx
x

xdx
x

dx
x

xdx
x

xxx

+
+

−+−+=

+
+

+
−

+
=

+
−+−

∫∫ ∫∫
 

Example 5   Evaluate .
)cos2(sin 2∫ + xx

dx
 

Solution: Since 

  ∫∫ +
=

+ )cos2(sin
sin

)cos2(sin 222 xx
xdx

xx
dx

 

substituting  
,sincos xdxduandxu −==  we get 

 ∫∫∫∫ +−
=

+−
−

=
+

=
+ )2)(1()2)(1()cos2(sin

sin
)cos2(sin 2222222 uu

du
uu

du
xx

xdx
xx

dx
 

But then the partial fraction representation for the integrand of the last integral has the 
form 

 
211)2)(1(

1
222 +

+
+

+
+

−
=

+− u
DCu

u
B

u
A

uu
 

Then by similar procedure as the above examples we have 
 )1)(1)(()2)(1()2)(1(1 22 +−+++−+++= uuDCuuuBuuA     (*) 
Then putting u=1 gives us 1=6A or A=1/6 
Putting u=-1 gives us 1=-6B or B=-1/6 
We now compare coefficients to find the remaining two constants 
 Coefficients of x3: 0=A+B+C    or C=0 
     Constant terms: 1=2A- 2B-D or D=-1/3 Therefore  

 
2
3/1

1
6/1

1
6/1

)2)(1(
1

222 +
−

+
+

−
+

−
=

+− uuuuu
 

so that  

 
Cu

u
u

du
u

du
u

du
uuu

du

+−
+
−

=

+
+

+
−

−
=

+− ∫∫∫∫

2
arctan

23
1

1
1ln

6
1

2
1

3
1

1
1

6
1

1
1

6
1

)2)(1( 222

 

Consequently resubstituting cosx for u we have  
 

 .
2

cosarctan
23

1
1cos
1cosln

6
1

)cos2(sin 2 Cx
x
x

xx
dx

+−
+
−

=
+∫  

 
Exercise 1.3 

1.  ∫ −
dx

x
x

12

2

    2.  dx
xx
xx

∫ −
+−
23

2

4
4122

   

3.  ∫
− +

++0

1
2

2

1
1 dx

x
xx

   4.  dx
xx

xxx
∫ ++

+++−
22

23

)1)(1(
3
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5.  ∫ ++
− dx
xx

x
43

1
3

2

   6.  ):int(;
1
1

∫ =
+
+ xuSubstituteHdx

x
x

 

7.  ∫ +
dx

x
xx

1sin
cossin

2

2

   8.  )tan:int(;tan
4/

0

3 xuSubstituteHxdx =∫
π

 

9.  ∫ −
dx

e
e

x

x

31
    10.  ∫ ++ xx ee

dx
2231

 

5.4  Trigonometric Integrals  
Integrals such as  

 ∫ ∫ ∫ xdxxandxdxxxdxx 4cos3sin,sectan,cossin 3235  

are called trigonometric integrals because their integrands are combinations of 
trigonometric functions. This section is devoted to trigonometric integrals especially 
those in which the integrands are composed of the basic trigonometric functions. 
Guidelines for evaluating integrals of the form ∫ xdxx nm cossin  

1. If m is an odd integer: Write the integrals as  

∫∫ −= xdxxxxdxx nmnm sincossincossin 1  and express xm 1sin −  in terms of  xcos  

by using the trigonometric identity .cos1sin 22 xx −= Make the substitution  

xdxduxu sin,cos −==  
and evaluate the resulting integral. 

2. If n is an odd integer: write the integral as 

∫∫ −= xdxxxxdxx nmnm coscossincossin 1  

and express xn 1cos −  in terms of xsin by using the trigonometric identity 
.sin1cos 22 xx −=  Make the substitution 

  xdxduxu cos,sin ==  
and evaluate the resulting integral. 

3. If m and n are even:  Use half-angle formulas for 

2
2cos1cos

2
2cos1sin 22 xxandxx +

=
−

=  and the identity 

 xxx 2sin
2
1cossin =   

to reduce the exponents by one-half. 

Example 1   Evaluate ∫ .cossin 23 xdxx   
Solution:  By guideline 1 

  
.sincos)cos1(

sincossincossin
22

2223

∫
∫∫

−=

=

xdxxx

xdxxxxdxx
 

If we let ,cos xu =  then ,sin xdxdu −=  and the integral may be written 
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.coscos

)()()1(cossin

3
3
15

5
1

3
3
15

5
1

242223

Cxx

Cuu

duuuduuuxdxx

+−=

+−=

−=−−= ∫∫∫
  

Example 2   Evaluate .cossin 42 xdxx∫  
Solution: By guideline 3 we have 

 
∫
∫∫

=

=

xdxxx

xdxxxxdxx
22

22242

cos)cos(sin

cos)cos(sincossin
 

 

dxxx ⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛= ∫ 2

2cos12sin
2
1 2

 

 ∫∫ += xdxxxdx 2cos2sin
8
12sin

8
1 22  

Putting
2

4cos12sin 2 xx −
=  and xdxduthatsoxu 2cos22sin ==  in the first and second 

integrals of the right of the last equation we get: 

 

.2sin
48
14sin

64
1

16
1

48
14sin

64
1

16
1

2
1

8
1

2
4cos1

8
1

3

3

2

Cxxx

Cuxx

duudxx

++−=

++−=

+
−

= ∫∫

 

An alternative way to evaluate ∫ xdxx nm cossin  when m and n are even is to use the 

identity ,1cossin 22 =+ xx  but this time we transform the integral into integrals of the form 

∫ xdxksin  or of the form ∫ xdxkcos , which can be evaluated by the reduction formulas. 

Guidelines for evaluating integrals of the form ∫ xdxx nm sectan  
1. If m is an odd integer: Write the integrals as  

∫∫ −−= xdxxxxxdxx nmnm tansecsectansectan 11  and express xm 1tan −  in terms of 

xsec  by using the trigonometric identity .1sectan 22 −= xx Make the substitution  

xdxxduxu tansec,sec ==  
and evaluate the resulting integral. 

2. If n is an even integer: write the integral as 

∫∫ −= xdxxxxdxx nmnm 22 secsectansectan  

and express xn 2sec −  in terms of xtan by using the trigonometric identity 
.tan1sec 22 xx +=  Make the substitution 

  xdxduxu 2sec,tan ==  
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and evaluate the resulting integral. 

3. If m is even and n is odd: Reduce to powers of xsec alone by using the identity 
1sectan 22 −= xx . 

Example 3   Evaluate ∫ .sectan 53 xdxx  
Solution:   By guideline 1 above 

  
.)tan(secsec)1(sec

)tan(secsectansectan
42

4253

dxxxxx

dxxxxxxdxx

∫
∫∫

−=

=
 

Substituting xu sec= and ,tansec xdxxdu =  we obtain 

  
.)(

)1(sectan
46

4253

∫
∫∫

−=

−=

duuu

duuuxdxx
 

  
Cxx

Cuu

+−=

+−=
5

5
17

7
1

5
5
17

7
1

secsec
 

Example 4   Evaluate ∫ .sectan 43 xdxx  
Solution:  By guideline 2 above 

  
∫
∫∫

+=

=

xdxxx

xdxxxxdxx
223

22343

sec)tan1(tan

secsectansectan
  

If we let xdxduthenxu 2sec,tan == , and 

  

Cuu

duuu

duuuxdxx

++=

+=

+=

∫
∫∫

4
4
16

6
1

35

2343

)(

)1(sectan

 

      .tantan 4
4
16

6
1 Cxx ++=  

Integrals of the form ∫ xdxx nm csccot  may be evaluated in similar fashion. 

Finally, the evaluation of integrals of the form ∫ bxdxax cossin depends on the 
trigonometric identity 

  )sin(
2
1)sin(

2
1cossin yxyxyx ++−=  

With the appropriate replacements, this identity becomes 

  xbaxbabxax )sin(
2
1)sin(

2
1cossin ++−=   (*) 

Notice that xbaandxba )sin()sin( 2
1

2
1 +− are easy to integrate by substitution. 

Example 5   Evaluate .2cos4sin∫ xdxx  

Solution:  Using (*) with 4=a and b = 2, we find that  
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.6sin

12
12cos

4
1

6sin
2
12sin

2
12cos4sin

Cxx

dxxxxdxx

+−−=

⎟
⎠
⎞

⎜
⎝
⎛ += ∫∫

 

Note that integrals of the form  
 ∫∫ bxdxaxandbxdxax coscossinsin  

can be found by similar techniques. 
Exercise 1.4 Evaluate the following integrals. 

1.  ∫ xdxx 43 cossin    2.  ∫
2/

0

52 cossin
π

xdxx  

3.  ∫ xdxx 3cossin    4.  dxxx 2)cot(tan∫ +  

5.  ∫ xdxx 43 csctan    6.  xdxx 33 csccot∫  

7.  ∫ xdxx 3sin5sin    8.  ∫
4/

0

5coscos
π

xdxx  

9.  ∫
3/

0

2/3sectan
π

xdxx    10.  ∫ xdx6tan  

5.5  Trigonometric Substitutions 
Observe that the trigonometric substitution θsinax =  simplifies the expression 

22 xa − , with a>0, into a trigonometric expression without radical i.e 

  θθθ cossin1sin 222222 aaaaxa =−=−=− . 

We can use a similar procedure for 22 xa + ,and .22 ax −  This technique is useful for 
eliminating radicals from these types of integrands. The substitutions are listed in the 
table 1.1. 

When making a trigonometric substitution we shall assume that θ  is in the range of the 
corresponding inverse trigonometric function. Thus, for the substitution θsinax = , we have 

,2/2/ πθπ ≤≤−  In this case, 0cos ≥θ . 

Trigonometric Substitutions 
Expressions in integrand Trigonometric substitution Interval(s) 

22 xa −  θsinax =  ,2/2/ πθπ ≤≤−  

22 xa +  θtanax =  ,2/2/ πθπ <<−  

22 ax −  θsecax =  2
3,2/0 πθππθ <≤<≤ or  

     Table 1.1 

Example 1   Evaluate .
16
1

22
dx

xx∫
−

 

Solution: Since ,416 222 xx −=−  we substitute 
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4x 

216 x−  

,sin4 θ=x  so that θθ ddx cos4=  for .2/2/ πθπ <<−  

Then  

 

.cot
16
1

csc
16
1

sin
1

16
1

)cos4(
sin14sin16

1

)cos4(
sin1616sin16

1
16
1

2
2

22

2222

C

dd

d

ddx
xx

+−=

==

−
=

−
=

−

∫∫

∫

∫∫

θ

θθθ
θ

θθ
θθ

θθ
θθ

 

In order to write the answer in terms of the original variable x, we draw the triangle as 
fig1.1, in which .sin4 θ=x  
 
 
 
   
 

Fig 1.1 
Thus  

 .
16

16cot
16
1

16
1 2

22
C

x
xCdx

xx
+

−
−=+−=

−
∫ θ  

Example 2  Evaluate dxx∫
−

−
2/5

2/5

2425  

Solution:  Because ,)2(5425 222 xx −=−  we are led to substitute 

,sin52 θ=x  so that ,sin
2
5 θ=x  and thus θθddx cos

2
5

=  

For the limits of integration we notice that  
if .22

5
,22

5 ππ θθ ==−=−= thenxifandthenx  
Therefore 

x
x 216cot −

=θ  θ
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x 

 

( )

πππ

θθ

θθ

θθθ

θθθ

π

π

π

π

π

π

π

π

4
25

442
25

2sin
4
1

2
1

2
25

cos
2
25

cossin1
2
25

cos
2
5sin55

)2(5425

2/

2/

2/

2/

2

2/

2/

2

2/

2/

222

2/5

2/5

22
2/5

2/5

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−−=

⎟
⎠
⎞

⎜
⎝
⎛ +=

=

−=

⎟
⎠
⎞

⎜
⎝
⎛−=

−=−

−

−

−

−

−−

∫

∫

∫

∫∫

d

d

d

dxxdxx

 

Example 3   Evaluate .
16
1

22
dx

xx∫
+

 

Solution:  The denominator of the integrand has an expression of the form 22 xa +  
with .4=a  Hence, using table 1.1, we make the substitution 
  .sec4,tan4 2 θθθ ddxx ==  
Consequently 
 θθθθ sec4sec4tan14tan161616 2222 ==+=+=+ x  

and 
θ

θ
θθ

θ
θ

θθ
θθ

dd

ddx
xx

∫∫

∫∫

==

=
+

22

2
222

sin
cos

16
1

tan
sec

16
1

sec4
)sec4(tan16

1
16
1

 

 
θsin16

1
−=  

To give the answer in terms of x, we use the triangle in Fig 1.2, with θtan4=x . We then 
find that  
 
 
 
 
   
 

Fig 1.1 

Example 4   Evaluate .93

6

2

dx
x

x
∫
−

−

−  

.
16

16
sin16
1

16
1

16
sin

2

22

2

C
x

xdx
xx

and
x

x

+
+

=−=
+

+
=

∫ θ

θ

 θ

216 x+

4
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Solution:  The domain of the integrand consists of ]3,( −−∞  and ),,3[ ∞ but since the 
interval over which we must integrate is [-6,-3], we seek an antiderivative whose domain 
is contained in ]3,( −−∞ . Since ,39 222 −=− xx  we let 
  θθθθ ddxthatsox tansec3,sec3 ==  

and notice that .tan39sec99 22 θθ =−=−x  For the limits of integration we observe 
that 

  .3,
3

4)2(sec6 1 πθπθ =−==−=−= − thenxifandthenxif  

Therefore  

 

.33

)(tan3)1(sec3

tan3)tansec3(
sec3
tan3

)tansec3(
sec3

9sec99

3/4
3/4

2

3/4

2

3/4

3/4

23

6

2

−=

−=−=

==

−
=

−

∫

∫∫

∫∫
−

−

π

θθθθ

θθθθθ
θ
θ

θθθ
θ
θ

π

π

π

π

π

π

π

π

π

π

d

dd

ddx
x

x

 

Integrals containing dcxbx ++2  

By completing the square in dcxbx ++2 we can express dcxbx ++2  in terms of 
222222 ,, axoraxxa −+− for suitable .0>a  Then a trigonometric substitution 

eliminates the square root as before. 

Example 5  Evaluate ∫
++

.
258

1
2

dx
xx

 

Solution: We complete the square for the quadratic expression as follows: 

 

9)4(
1625)168(

25)8(258

2

2

22

++=

−+++=

++=++

x
xx
xxxx

 

Thus, 

  .
9)4(

1
258

1
22

dx
x

dx
xx∫ ∫

++
=

++
 

If we make the trigonometric substitution 
   θθθ ddxx 2sec3,tan34 ==+  
then  
 θθθ sec31tan39tan99)4( 222 =+=+=++x  
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and  

.tansecln

sec

sec3
sec3
1

258
1 2

2

C

d

ddx
xx

++=

=

=
++

∫

∫ ∫

θθ

θθ

θθ
θ

 

Using our formulas for θθ sectan and , we conclude that 

 ∫ +
+

+
++

=
++

.
3

4
3

258ln
258

1 2

2
Cxxxdx

xx
 

Exercise 1.4  In Exercises1-10 evaluate the integral. 

1.  dx
xx∫

− 22 9
1    2.  .)1(

6

2/32

dx
x
x

∫
−

 

3.  ∫ +

1

0
2/52 )23(

1 dx
x

   4.  ∫
−

2

1
2 12

1 dx
x

 

5.  ∫
−

6

23
24 9

1 dx
xx

   6.  ∫
2

2

sec dxarc  

7.  ∫
−

dx
e

e
x

x

2

3

1
    8.  dx

xx∫
− 24

1  

9.  ∫ +−
dx

xx 22
1

2    10.  ∫ ++
+ dx

xx
x

1769
5

2  

5.6  Improper integrals 

The definite integral ∫
b

a

dxxf )( has meaning only when f is continuous on [a,b] 

consequently bounded on [a,b]. We say f is bounded on an interval I if there is a constant 
M such that Mxf ≤)( for all x in I. In this section, we shall extend the definition of the 
definite integral when either the integrand or the interval of integration is unbounded. 
Such integrals are called improper integrals. 

1.6.1 Integrals Over Unbounded Intervals 

If f is continuous on ),[ ∞a , then the improper integral ∫
∞

a

dxxf )(  converges if 

∫∞→

t

a
t

dxxf )(lim  exists. In that case  

∫∫ ∞→

∞

=
t

a
t

a

dxxfdxxf )(lim)(      (1) 

If the limit does not exist, the improper integral diverges. 
Again if f is continuous on ],,( a−∞  then  



 Prepared by Tibebe-selassie T/mariam 128

∫∫ −∞→
∞−

=
a

t
t

a

dxxfdxxf )(lim)(      (2) 

provided the limit exists. 
Example 1 Determine whether the integral converges or diverges, and if it converges, 
find its value. 

(a)  dx
x∫

∞

+0
2)1(

1    (b)  ∫
∞

+0 1
1 dx

x
 

Solution: (a) Following the discussion above and equation (1) we have 

 

110
10

1
1

1lim

1
1lim

)1(
1lim

)1(
1

00
2

0
2

=+=⎥⎦
⎤

⎢⎣
⎡

+
+

+
−

=

⎥⎦
⎤

⎢⎣
⎡

+
−

=
+

=
+

∞→

∞→∞→

∞

∫∫

t

x
dx

x
dx

x

t

t

t

t

t
 

Thus, the improper integral converges and has the value 1. 
(b) Using equation (2) 

 [ ]
[ ]
[ ] .)1ln(lim

)10ln()1ln(lim

)1ln(lim

1
1lim

1
1

0

00

∞=−=

+−+=

+=

+
=

+

∞→

∞→

∞→

∞→

∞

∫∫

t

t

x

dx
x

dx
x

t

t

t

t

t

t

 

Since the limit does not exist, the improper integral diverges. 

Example 2 Determine whether the integral dxe x∫
∞−

1

 converges or diverges, and if it 

converges, find its value. 
Solution:  As in Example 1; 

  
[ ]

[ ] .lim

limlim

1

1
11

eee

edxedxe

t

t

t
x

t
t

x

t

x

=−=

==

−∞→

−∞→−∞→
∞−

∫∫
 

Thus, the integral converges and has the value e. 
Finally, for integrals over the range ),( ∞−∞ , we write  

∫∫∫
∞

∞−

∞

∞−

+=
a

a

dxxfdxxfdxxf )()()(       (3)  

provided both of the improper integrals on the right converge. 

If either of the integrals on the right in (3) diverges, then ∫
∞

∞−

dxxf )( is said to diverge. It 

can be shown that (3) does not depend on the choice of the real number a . 
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Example 3  Determine whether ∫
∞

∞− +
dx

x 21
1  diverges. 

Solution: Using (3), with 0=a , we have 

  .
1

1
1

1
1

1

0
2

0

22 ∫∫∫
∞

∞−

∞

∞− +
+

+
=

+
dx

x
dx

x
dx

x
 

Next, applying (2) 

  
[ ]

[ ] .
2

)
2

(0arctan0arctanlim

arctanlim
1

1lim
1

1 0
0

2

0

2

ππ
=−−=−=

=
+

=
+

−∞→

−∞→−∞→
∞−

∫∫

t

xdx
x

dx
x

t

tt
t

t
 

Similarly, we may show, by using (1) that 

  .
21

1

0
2

π
=

+∫
∞

dx
x

 

Consequently the given improper integral converges and has the value .
22

πππ
=+  

1.6.2 Integrals with Unbounded Integrands 
We now consider a function f that is continuous at every point in ],( ba  and unbounded 

near .a By assumption f is continuous on the interval ],[ bt  for any t in ),,( ba  so that 

∫
b

t

dxxf )(  is defined for such t. If the one-sided limit 

    ∫+→

b

t
at

dxxf )(lim  

exists, then we define ∫
b

a

dxxf )(  to be the limit. This idea leads us to the following 

definitions: 
(i) If f is continuous on ),[ ba and discontinuous at b, then    

           ,)(lim)( ∫∫ −→
=

t

a
bt

b

a

dxxfdxxf        (4)         provided 

the limit exists. 
(ii) If f is continuous on ],( ba and discontinuous at a , then   

            ,)(lim)( ∫∫ +→
=

b

t
at

b

a

dxxfdxxf       (5)                 

provided the limit exists. 
As in the preceding section, the integrals defined in (4) and (5) are referred to as 

improper integrals and they converge if the limits exist. The limits are called the values of the 
improper integrals. If the limits do not exist, the improper integrals diverge. 

Example 4  Evaluate .
2
12

1

dx
x∫ −
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Solution: Since the integrand has an infinite discontinuity at x = 2, we apply (4) and have 

   
t

t

t

t

x

dx
x

dx
x

1
2

1
2

2

1

]22[lim

2
1lim

2
1

−−=

−
=

−

−

−

→

→ ∫∫
 

 
   .2]122(22[lim

2
=−−−−−=

−→
t

t
 

Example 5   Determine whether the improper integral dx
x∫

1

0

1 converges or diverges. 

Solution: The integrand is unbounded near 0. Applying (5) gives us 

  .]ln1[lnlim][lnlim1lim1
0

1

0

1

0

1

0

∞=−===
+++ →→→ ∫∫ txdx

x
dx

x t
t

t
t

t
 

Consequently the improper integral diverges, since the limit does not exist. 
We give the definition of another improper integral as follows. 

If f has a discontinuity at a number c in the open interval (a,b) but continuous elsewhere 
on ],,[ ba  then 

,)()()( ∫∫∫ +=
b

c

c

a

b

a

dxxfdxxfdxxf    (6) 

provided both of the improper integrals on the right converge. If both converge, then the 

value of the improper integral ∫
b

a

dxxf )( is the sum of the two values. 

Example 6 Determine whether the improper integral ∫ −

4

0
2)3(

1 dx
x

 converges or diverges. 

Solution: The integrand is undefined at x = 3. Since this number is in the interval (0,4), 
we use (6), with c = 3: 

  ∫∫∫ −
+

−
=

−

4

3
2

3

0
2

4

0
2 )3(

1
)3(

1
)3(

1 dx
x

dx
x

dx
x

 

For the integral on the left to converge, both integrals on the right must converge. 
However, since 

  

∞=⎥⎦
⎤

⎢⎣
⎡ −

−
−

=

⎥⎦
⎤

⎢⎣
⎡

−
−

=

−
=

−

−

−

−

→

→

→ ∫∫

3
1

3
1lim

3
1lim

)3(
1lim

)3(
1

3

0
3

0
23

3

0
2

t

x

dx
x

dx
x

t

t

t

t

t

 

the given improper integral diverges. 
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The other kind of improper integral is found if f is continuous in (a,b)and is unbounded 

near both a and b. We say that ∫
b

a

dxxf )(  converges if for some point c in (a,b) both the 

integrals ∫
c

a

dxxf )(  and ∫
b

c

dxxf )(  converge. Otherwise we say that the integral is 

divergent. 

Example 7  Determine whether ∫
−

−1

0
2

21 dx
xx
x diverges. 

Solution: The integrand is unbounded near both the endpoints 0 and 1 and is continuous 
on (0,1). Consequently the integral is of the type under consideration. If we let 4

3=c ,then 
we need to analyze the convergence of  

∫
−

−4/3

0
2

21 dx
xx
x   and  ∫

−

−1

4/3
2

21 dx
xx
x  

For 4
30 << t  we have  

 

2
32

16
3

0

4/3
2

0

4/3

20

4/3

0
2

)](2[lim

]2[lim21lim21

=−−=

−=
−

−
=

−

−

+

++

→

→→ ∫∫

tt

xxdx
xx
xdx

xx
x

t

tt
t

t  

A similar computation shows that the second improper integral also converges and that  

   .
2
3211

4/3
2

−=
−

−
∫ dx

xx
x  

Therefore the original integral converges, and 

 ∫
−

−1

0
2

21 dx
xx
x = ∫

−

−4/3

0
2

21 dx
xx
x + ∫

−

−1

4/3
2

21 dx
xx
x = 0

2
3

2
3

=− . 

Exercise 1.6 
Determine whether the integral converges or diverges, and if it converges, find its value. 

1.  dx
x

x
∫
∞

+0
21

    2.  dx
x∫

∞− +

0

2)3(
1  

3.  ∫
∞

−1
2 1
1 dx

x
   4.  ∫

∞

∞−

− dxxe x2

 

5.  ∫
9

0

1 dx
x

    6.  ∫
2/

0

2sec
π

xdx  

7.  dx
x∫

− −

0

2
24

1    8.  ∫
π

0

sec xdx  

9.  dx
x∫

− +

7

2
3/2)1(

1    10.  dx
xx

x
∫ −

−1

0
3

2 13  
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)1)(1(
0

2

442

++−⇔

=−⇔=⇒=

xxxx
xxxxxx

5.7  Application of the Integral 
Area (Review) 

Definition: Let f and g be continuous on [a,b], with bxaforxgxf ≤≤≥ )()( . The 
area A of the region between the graphs of f and g on [a,b] is given by 

    ∫ −=
b

a

dxxgxf )]()([A  

Example 1 Find the area of the region bounded by the graphs of the equations 
.2 xyandxy ==  

Solution: First sketch the graphs on the same plane. And find the intesection of the two 
graphs by putting xx =2 . Observe that 
 
 
Hence x=0 or x=1 since 

12 ++ xx >0 for every real x the two graphs intersect 
at (0,0) and (1,1). Moreover xx ≤2  on [0,1]. Thus 
the area A of the region bounded by the graphs is 
given by 

3
1

3
1

3
2)(

1

0

32/3
1

0

2 =−=−= ∫ xxxxA  

Example 2 Let .cos)(sin)( xxgandxxf ==  Find 
the area A of the region between the graphs of f and g on [0,2π]. 
Solution: xx cossin = , on [0,2π] implies that 1tan =x  on [0,2π]. And 1tan =x  on 

[0,2π] for .
4

5
4

ππ xandx =  Thus the two graphs intersect at ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

2
2,

4
5

2
2,

4
ππ and  

and the region bounded by the two graphs on 
[0,2π] is as below. 

Observe that ],4/,0[cossin πonxx ≥  
xxandonxx cossin]4/5,4/[cossin ≥≥ ππ  

[5π/4,2π] and it follows that 

24)21(22)12(

)cos(sin

)sincos()cos(sin

)sin(cos

)cos(sin)sin(cos

2
4/5

4/5
4/

4/
0

2

4/5

4/5

4/

4/

0

=+++−=

+

−−++=

−+

−+−=

∫

∫∫

π
π

π
π

π

π

π

π

π

π

xx

xxxx

dxxx

dxxxdxxxA
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Example 3 Find the area of the region bounded by the graph of y-x = 6, y-x3=0 and 
2y+x=0. 
Solution: First we graph the region as follows. We divid the region in two two regions R1  

and R2 as in the plote to the right 

126]6[
0

4

2
4
3

0

4
2
1

1 =+=++=
−

−
∫ xxdxxxA  

and 

10)6(
2

0

3
2 =−+= ∫ dxxxA  

Thus the area A of the entire region R is  
A=A1+A2=22. 

 
 
 
 
Reversing the roles of x and y 
Instead of considering a region R that is 
bounded between the graphs of two functions 

of x, it is sometimes convenient to consider R as the region between the graphs of two 
functions of y. Then the area is computed by integrating along the y-axis, instead of along 
the x-axis. 
Example 4 Find the area of the region bounded by the graphs of the equations 2y2=x+4 
and y2=x. 
Solution: First we sketch the region as below 

Solving the equation xx
=

+
2

4
 we can see that    

the two graphs intersec at the two points (4,-2)  
and (4,2) moreover the graph of 2y2=x+4 lays  
to the left of the graph of y2=x. Hence the area  
A of the region bounded between the two graphs 
is given by 

               

.
3

32
3
14)]42([

2

2

3
2

2

22

=

−=−−=
−−

∫ yydyyyA
 

 
 
Class Work 
Find the area A of the regions bounded between the graphs of the equations bellow. 
a) y=x2+1 and y=2x+9   b) x=y2-y and x=y-y2 
Volume  
The cross –section method 
If a solid region D has cross-sectional area A(x) for ,bxa ≤≤ and if A is continuous on 
[a,b] , then we define the volume V of D by the fromula 
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     .)(∫=
b

a

dxxV A  

Example 1 Show that the volume of a sphere of radius r is 
    3

3
4 rV π=  

Solution: If we place the sphere so that its center is at the origin then the plane Px 
intersects the sphere in a circtle whose radius (from the Pythagorean theorem) is 
 
 
 
 
 
 
 

 
 
 

.22 xry −=  So that cross-section area is  
  )()( 222 xryx −== ππA  
Using the formula with ,rbandra =−= we have 

  

3
3
4

3
2

22

3

)()(

r

xxr

dxxrdxxAV

r

r

r

r

r

r

π

π

π

=

⎥
⎦

⎤
⎢
⎣

⎡
−=

−==

−

−−
∫∫

 

 
Class work 
Suppose a pyramid is 4 units tall and has a squere base 3 units on a side. Find the volume 
V of the pyramid. 
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The Disc Method 
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Example 2 Find the volume generated by revolving the region bounded by 
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The Washer Method 
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Class Work 
Let f(x)=5x and g(x)=x2 and let R be the region between the graphs of f and g on [0,3]. 
Find the volume of the solid obtained by revolving R about the x-axis. 
 



 Prepared by Tibebe-selassie T/mariam 141

6   Sequences and Series 
In this chapter we first study sequences, which by definition are functions since they are 
helpful in the study of series. Series can be used to represent many of the differentiable 
functions such as polynomial, exponential, logarithmic etc. functions. A major advantage 
of the series representation of functions is that it allows us to evaluate integrals of the 
form say ∫ ∫ − dxeanddxx x2

sin  and also approximate numbers such as e, π, and 2 . 

6.1   Definition and Notions of Sequence 
An ordered set of numbers such as ,...,...,,, 321 naaaa is called a sequence and usually 
designated briefly by { }na . Each number ka  is a term of the sequence. In particular the 
nth term of a sequence is denoted by .na  We may also define a sequence as a function. 
Definition 6.1 A sequence is a function whose domain is the collection of all integers 
greater than by or equal to a given integer m(usually 0 or 1). 
 Observe if we define a function by 
   1)( ≥= nforanf n       (1) 
then the ordered set of numbers ,...,...,,, 321 naaaa determines a sequence. As a result we 

normally suppress the symbol f and just write { }∞
=1nna  for the sequence defined in (1). 

Similarly if  
   mnforanf n ≥=)(  

then we would write { }∞
=mnna  for the sequence. 

Example 1  List the first four terms and the tenth term of each sequence: 

(a) 
∞

=

−

⎭
⎬
⎫

⎩
⎨
⎧

+
−

1

1

1
2)1(

n

n

n
n   (b) { }∞

=+ 0)1.0(2 n
n  (c) 

∞

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

0
2
1

n

n

  (d) { }∞
=12 n  

Solution: To find the first four terms, we substitute, successively, n = 1, 2, 3, and 4 in the 
formula for na . The tenth term is found by substituting 10 for n. Doing this and 
simplifying gives us the following: 
Sequence nth term an The first four terms Tenth term 

(a) 
∞

=

−

⎭
⎬
⎫

⎩
⎨
⎧

+
−

1

1

1
2)1(

n

n

n
n  1

2)1( 1

+
− −

n
nn

5
8,

2
3,

3
4,1 −−  

11
20

−  

(b) { }∞

=+ 0)1.0(2 n
n  

1)1.0(2 −+ n  2,2.1,2.01,2.001 2.000000001 

(c)  
∞

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

0
2
1

n

n

 
1

2
1 −

⎟
⎠
⎞

⎜
⎝
⎛

n

 8
1,

4
1,

2
1,1  92

1  

(d)  { }∞
=12 n  2 2,2,2,2 2 

 When the first few terms of a sequence are given, the general term is obtained by 
inspection. 
Example 2 Obtain the nth term for each of the sequences: 
 a) 1, 4, 9, 16, 25, . . .  b) 3, 7, 11, 19, 23, . . .  
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Solution: (a) The terms of the sequence are the squares of the positive integers; the nth 
term is n2. 
(b) This is an arithmetic progression having first term A1 = 3 and common difference 
d=4. The nth term is A1+ (n –1)d = 4n –1. Note, however, that the nth term can be 
obtained about as easily by inspection. 

Exercise 2.1 
1.  Write the first five terms and the tenth term of the sequence whose nth term is: 

     a) 4n –1     b) 
1

)1( 1

+
− −

n

n

    c) 
!
1

n
n +  

2. Write the nth term for each of the following sequences: 
a) 2,4,6,8,10,12,… b) 2,-5,8,-11,14,…  c) 3,4,5/2,1,7/24,… 

6.2   Convergence of Sequences 
 A sequence { }na  may have the property that as n increase, an gets very close to 

some real number L. For instance in the sequence ( ){ }∞

=02
1

n
n  the nth term ( )n

2
1  can be made 

arbitrary close to 0 by choosing n sufficiently large. This concept leads us to the 
following definition of convergence of a sequence. 
Definition 6.2 A sequence { }∞

=1nna  has the limit L, or converges to L, denoted by either  
  Lann

=
∞→

lim   or  ,∞→→ nasLan  

if for every 0>ε  there exists a positive number N such that  
  ε<− Lan  whenever  .Nn >  
If such a number L does not exist, the sequence has no limit, or diverges. 
 If we can make an as large as desired by choosing n sufficiently large, then the 
sequence { }∞

=1nna  diverges, but we still use the limit notation and write .lim ∞=∞→ nn a  A 
more precise way of specifying this follows. 
Definition 6.3 Let { }∞

=1nna  be a sequence. If for every number M there is an integer N 
such that 
   If MathenNn n >≥ ,  

we say that { }∞
=1nna  diverges to ,∞ and we write  

   .lim ∞=
∞→ nn

a  

Similarly, if for every number M there is an integer N such that 
   If MathenNn n <≥ ,  

we say that { }∞
=1nna  diverges to ,∞− and we write  

   .lim −∞=
∞→ nn

a  

 But referring to Definition 6.3 to show that a sequence diverges, or referring to 
Definition 6.2 to show that a sequence converges or diverges is tedious. One way to 
avoid constantly using Definition 6.2 and Definition 6.3 arises from the fact that the 
definition of  Lann =∞→lim  is analogues with the definition of Lxfn =∞→ )(lim  and 
similarly, that the definition of ∞=∞→ nn alim )( ∞−or  is analogues with the definition  
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of  )()(lim ∞−∞=∞→ orxfn . These observations lead us to the following theorem. 

Theorem 6.4 Let { }∞
=1nna  be a sequence, L a number, and f a function defined on [m,∝) 

such that .)( mnforanf n ≥=  If ,)(lim Lxf
x

=
∞→

 then { }∞
=1nna  converges and Lann

=
∞→

lim . 

If ),)(lim()(lim −∞=∞=
∞→∞→

xforxf
nn

then { }∞
=1nna  diverges, and ∞=

∞→ nn
alim  ).lim( −∞=

∞→ nn
a  

Thus   ).(limlim xfa
nnn ∞→∞→

=  

 The following example illustrates the use of Theorem 2.4. 

Example 1 Determine whether the sequence 
∞

=⎭
⎬
⎫

⎩
⎨
⎧ +

1
2

12
nn

 converges or diverges. 

Solution: We let 

   112)( 2 ≥+= xfor
x

xf  

Then 112)( 2 ≥+= nfor
n

nf . Since 21lim2lim12lim)(lim 22 =+=⎟
⎠
⎞

⎜
⎝
⎛ +=

∞→∞→∞→∞→ xx
xf

xxxx
. We 

then conclude from theorem 2.4 that  

    .212lim 2 =⎟
⎠
⎞

⎜
⎝
⎛ +

∞→ nn
 

Thus the sequence converges to 2. 
Example 2 Determine whether the sequence converges or diverges: 
(a) { }∞

=+ 1
3 2 nn     (b) { }∞

=− 1)1( n
n  

Solution: If we let  
   2)( 3 += xxf  for every 1≥x  
then  2)( 3 += nnf  for every 1≥n . Since ∞=+

∞→
)2(lim 3x

x
, by Theorem 6.4 

   ∞=+
∞→

)2(lim 3n
n

. 

Hence the sequence diverges. 
(b) Letting n=1,2,3, . . . , we see that the terms of (-1)n oscillate between 1 and –1 as 
follows: 
    –1  , 1,–1,1, –1, . . . 
Thus,  ∞=−

∞→

n

n
)1(lim does not exist, so the sequence diverges. 

Example 3 Let r be any number. Show that the sequence { }∞

=1n
nr  diverges for 1>r  and  

r = –1. show that for all other values of r the sequence converges, with 

     
⎩
⎨
⎧

<
=

=
∞→ 10

11
lim

rfor
rfor

r n

n
   

Solution: First we consider nonnegative values of r. Let 
    1)( ≥= xforrxf n  
so  
that .1)( ≥= nforrnf n It follows from our analysis of exponential functions that 
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⎪
⎩

⎪
⎨

⎧

>∞
=

<≤
=

∞→

1
11

100
lim

rfor
rfor

rfor
r x

x
 

By theorem 6.4 this means that  

    
⎪
⎩

⎪
⎨

⎧

>∞
=

<≤
=

∞→

1
11

100
lim

rfor
rfor

rfor
r n

n
   (*) 

Thus { }∞

=1n
nr  diverges for 1>r and converges for 10 ≤≤ r . Next we consider negative 

values of r. If r = –1, then { }∞

=1n
nr  becomes { }∞

=− 1)1( n
n , which diverges by Example 2 (b). 

If ,1−≠r  the since ,nn rr =  we know from (*) that  

   
⎩
⎨
⎧

−<∞
<<−

==
∞→∞→ 1

010
limlim

rfor
rfor

rr n

n

n

n
 

It follows that 010lim <<−=
∞→

rwhenr n

n
 and that n

n
r

∞→
lim  does not exist when .1−<r  

Example 4 Show that  
   .1lim =

∞→

n

n
n  

Solution: Notice  
   nnnn enn ln)/1(/1 ==  
Thus we let  
   =)(xf xxe ln)/1(  for 1≥x  
so that f is continuous and =)(nf nne ln)/1(  for 1≥x . Since 
   lnlimlim

∞→∞→
=∞=

nn
x  

by l’Hôpital’s Rule implies that  

   01lim
1
/1limlnlim ===

∞→∞→∞→ x
x

x
x

nnn
 

and thus  =
∞→

)(lim   
x

xf 1lim 0ln)/1(

x
==

∞→
ee xx  

6.2.1 Convergence Properties of Sequences 
Limit theorems that are analogous to those stated for real valued functions can be 
established for sequences. That is if { }∞

=mnna  and { }∞
=mnnb  are convergent sequences, then  

   

)0lim(
lim

lim
lim

limlimlim

limlim

limlim)(lim

≠=

=

=

+=+

∞→
∞→

∞→

∞→

∞→∞→∞→

∞→∞→

∞→∞→∞→

nn
nn

nn

n

n

n

nnnnnnn

nnnn

nnnnnnn

bprovided
b

a

b
a

baba

acca

baba
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Example 5 Find 
nn

n
n 42
lim 3

3

+∞→
. 

Solution: We divide both the numerator and denominator by n3 and apply the above limit 
theorems as follows: 

  
.

2
1

02
1

/4lim2lim
1

)]/4(2[lim

1lim

)/4(2
1lim

42
lim

2

223

3

=
+

=
+

=

+
=

+
=

+

∞→∞→

∞→

∞→

∞→∞→

n

nnnn
n

nn

n

n

nn

 

The version of the squeezing Theorem for sequences is as follows: 
Theorem 6.5 If { }∞

=mnna ,{ }∞
=mnnb , and { }∞

=mnnc  are sequences and nnn cba ≤≤  for every n 
and if 
    ,limlim nnnn

cLa
∞→∞→

==  

then     .lim Lbnn
=

∞→
 

Example 6 Find the limit of the sequence .
2

sin 2

⎭
⎬
⎫

⎩
⎨
⎧

n

n  

Solution: Since 1sin0 2 ≤≤ n  for every positive integer n, 

   nn

n
2
1

2
sin0

2

≤≤ . 

Applying Example 3 with 2
1=r , we have  

   0
2
1lim

2
1lim =⎟

⎠
⎞

⎜
⎝
⎛=

∞→∞→

n

nnn
 

Moreover, .00lim =
∞→n

 Hence it follows from the squeezing theorem that  

    .0
2

sinlim
2

=
∞→ nn

n  

Hence the limit of the sequence is 0. 

6.2.2 Bounded Monotone Sequences  
In analogy with boundedness for a function we say that a sequence { }∞

=mnna  is bounded if 
there is a number M such that Man ≤ for every mn ≥ . Otherwise we say that the 

sequence is unbounded. For instance the sequences { } { }∞

=
∞

= − 11 )1(/1 n
n

n andn  are bounded, 

whereas the sequence { }∞

=1
2

nn  is unbounded. 
 The following theorem gives as important criteria boundedness and divergence of 
sequences 
Theorem 2.6 a. If { }∞

=mnna converges, then  { }∞
=mnna  is bounded 

        b. If { }∞
=mnna  is unbounded, then { }∞

=mnna  is divergent. 
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Example 7 Since{ }∞
=1/1 nn is a convergent sequence the by Theorem6. 6 { }∞

=1/1 nn is 

bounced. And the unboundedness of { }∞

=1
2

nn implies by again Theorem 6.6 that { }∞

=1
2

nn  is 
divergent.  
Note: The above theorem does not imply that all bounded sequences converge, and 
indeed that is not the case. For example the sequence{ }∞

=− 1)1( n
n  is bounded but it 

diverges. 
Definition 6.7 A sequence { }∞

=mnna  is said to be an increasing sequence if 1+≤ nn aa  for 

each .mn ≥  Similarly, { }∞
=mnna  is said to be a decreasing sequence if 1+≥ nn aa  for each 

.mn ≥  

Example 8   The sequences 
∞

=⎭
⎬
⎫

⎩
⎨
⎧

+ 11 nn
n  and { }∞

=1/1 nn  are increasing and decreasing 

sequences respectively by definition 2.7. 
The other way of showing whether a sequence { }∞

=mnna  is first to find a continuous real 
valued function f , if possible, such that nanf =)( and show that whether f is increasing 
or decreasing by using the first derivative test, and consequently decide that the sequence 

is increasing or decreasing. In Example 8 above if we let 
1

)(
1

)(
+

=
+

=
n

nnfthen
x

xxf  

and 0
)1(

1)(' 2 >
+

=
x

xf  for every x thus f is an increasing function for every x 

consequently the sequence 
∞

=⎭
⎬
⎫

⎩
⎨
⎧

+ 11 nn
n  is decreasing. Similarly we can show that { }∞

=1/1 nn  

is decreasing. 
Definition 6.8 A sequence which is either increasing or decreasing is said to be 
monotonic sequence 
Theorem 6.9  A bounded monotonic sequence { }∞

=mnna  converges. If the sequence is 
increasing, then the limit is the smallest number L such that .mnforLan ≥≤  If the 
sequence is decreasing, then the limit is the largest number L such that .mnforLan ≥≥  
Example 8 Let  

  .1
2

1
≥

+
= nfor

n
an  

Show that { }∞
=1nna  is convergent. 

Solution: Since 

  nn a
nnn

a =
+

<
+

=
++

=+ 2
1

3
1

2)1(
1

1  

The sequence is decreasing. Moreover 

  1
3
1

2
10 ≥≤
+

≤ nfor
n
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so { }∞
=1nna  is bounded. Hence { }∞

=1nna  is a bounded monotonic sequence consequently it is 
convergent by Theorem 6.9. 
Exercise 6.2  In problems 1-4 evaluate the limit a number .∞−∞ or  
1.  )23(lim n

n
−

∞→
   2.  n

n
e /1lim −

∞→
 

3.  
n

n n
⎟
⎠
⎞

⎜
⎝
⎛ +

∞→

05.01lim    4.  
nn

1lnlim
∞→

 

II Determine whether the sequence converges of diverges, and if it converges, find the 
limit. 
5.  { }∞

=− 15
4 )(2 n

n     6.  { }∞

=
−− 1

3 2)1( n
nn n  

7.  { }∞

=
−

1cos2 n
n n    8.  { }∞

=−+ 11 nnn  

9. { }∞

=
−

1ln n
n ne     10. { }∞

=1cos nnπ  

6.3   Subsequence and Limit Points 
Definition 6.10 Let { }∞

=1nna  be a sequence and let { }∞
=1kkn  be a sequence of positive 

integers such that 1+< kk nn  for each k, that is, { }∞
=1kkn  is a strictly increasing sequence. 

Then the sequence { }∞

=1knk
a  is called a subsequence of the sequence { }∞

=1nna . 

Example 1 Consider the sequence 
∞

=⎭
⎬
⎫

⎩
⎨
⎧

1

1

nn
. If we let knk 2=  for each positive integer k, 

the corresponding subsequence of 
∞

=⎭
⎬
⎫

⎩
⎨
⎧

1

1

nn
 is 

∞

=

∞

= ⎭
⎬
⎫

⎩
⎨
⎧=

⎭
⎬
⎫

⎩
⎨
⎧

11 2
1

2
1

nk nk
. Furthermore if we let 

{ }∞
=1kkn  be any strictly increasing sequence of positive integers, then the sequence 
∞

=⎭
⎬
⎫

⎩
⎨
⎧

1

1

nkn
 is a subsequence of the sequence 

∞

=⎭
⎬
⎫

⎩
⎨
⎧

1

1

nn
. 

Note: If { }∞
=1nna  is a sequence, then { }∞

=1nna  is a trivial subsequence of itself. 

Theorem 6.11  If the sequence { }∞
=1nna  converges to L, then every subsequence of the 

sequence { }∞
=1nna  also converges to L. 

Example 2 Observe that the sequence 
∞

=⎭
⎬
⎫

⎩
⎨
⎧

1

1

nn
in Example 1 above, converges to 0, 

consequently by Theorem 2.11 the subsequences 
∞

=⎭
⎬
⎫

⎩
⎨
⎧

− 112
1

nn
 and 

∞

=⎭
⎬
⎫

⎩
⎨
⎧

12
1

nn
 converge to 0. 

Definition 6.12 If the sequence { }∞
=1nna  diverges but does not diverge to positive infinity 

or to minus infinity, then the sequence { }∞
=1nna  is said to oscillate to be an oscillating 

sequence. 
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Example 3  The sequence { }∞

=− 1)1( n
n  is an oscillating sequence on the other hand even if 

the terms of the sequence  
∞

=⎭
⎬
⎫

⎩
⎨
⎧ −

1

)1(

n

n

n
 go up and down, it does not oscillate as it is a 

convergent sequence. 
Definition 6.13 Let { }∞

=1nna  be a sequence, the number L is called a limit point of { }∞
=1nna  

if and only if a subsequence of { }∞
=1nna  converges to L. 

Example 4 Since the sequences { } { }∞

=
−∞

= −− 1
12

1
2 )1()1( n

n
n

n and  are subsequences of 

{ }∞

=− 1)1( n
n  which converge to 1 and –1, 1 and –1 are the limit points of { }∞

=− 1)1( n
n . 

Exercise 6.3 Give the subsequence(s) and limit point(s) of the following sequences. 

1. 
∞

=⎭
⎬
⎫

⎩
⎨
⎧ −

1

)1(

n

n

n
     2.  { }∞

=1cos nnπ  

2.  
∞

=⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

14
sin

n

nπ     4.  
∞

=⎭
⎬
⎫

⎩
⎨
⎧ +

1

2 1

nn
n      

Worksheet  
 

1.   Write the first four terms of the sequence and determine whether it is convergent or 
     divergent. If the sequence converges, find its limit. 
     

     a.   {sinh n}                                  b.   { }22 nnn −+                c.   1>
⎭
⎬
⎫

⎩
⎨
⎧ c

c
n

n  

 
2.   Find nn

a
∞→

lim  if it exists where  

 

       a.   
n

n n
a ⎟

⎠
⎞

⎜
⎝
⎛ +=

31                                   b.   33 12 +−+= nnan   

       c.   
n

n n
na ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=

12

                               d.   
2

sin
1

πn
n

nan +
=  

       .e   nan tanh=                                      f.   
)!2(
)!(2

+
=

n
nnan  

3.   Determine whether the given sequence is monotonic or not, and convergent or not. 
 

       a.   
⎭
⎬
⎫

⎩
⎨
⎧

+ n

n

32
3           b.    

⎭
⎬
⎫

⎩
⎨
⎧

nn
n!                  c.   { }cos πn  

       d.   
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

+1
3ln

n
n                e.   { }n nn 43 +    f.  

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ +

211
n

  



 Prepared by Tibebe-selassie T/mariam 149

        g.  
⎭
⎬
⎫

⎩
⎨
⎧

+
+
2

)2ln(
n
n   h. 

⎭
⎬
⎫

⎩
⎨
⎧

+ 2)1(
3

n

n

 

 
4.  Determine the convergence or divergence of the sequence {an} if  
 

     a.   
1

ln
+

=
n

nan            b.   
n

n

3

2

11 ⎟
⎠
⎞

⎜
⎝
⎛ +              c.   2

)12(...531
n

n −++++  

 

     d.   ∑
=

−=
n

k

k
na

0

2          e.   b

a

n

n

na

⎟
⎠
⎞

⎜
⎝
⎛ −−

⎟
⎠
⎞

⎜
⎝
⎛ −−

=
111

111
 , where a and b are constants and b 0≠ . 

 

5. i.   Using 
⎩
⎨
⎧

>∞
<

=
∞→ 1

10
lim

rif
rif

r n

n
 

 

               a.   
( )
2

1
lim 3

1 n

n

+
∞→

              b.   n

n

n e2

)1(1lim −+
∞→

             c.   n nn

n
54lim +

∞→
 

 
6.   Let {an} be sequence with 21 =a and .1,21 ≥+=+ naa nn  
 
        a.  Show that {an} is convergent 
        b.   Find  nn

a
∞→

lim  

 

7.   Let   i.   .
)1(

1...
32

1
21

1
+

++
⋅

+
⋅

=
nn

an Show that 1lim =
∞→ nn

a . 

 

              ii.   .1...
2

1

1

1
222 nnnn

bn
+

++
+

+
+

= Show that  1lim =
∞→ nn

b . 

 
8.   Using the limit theorem sequence it can be show that if 0→na  and { }nb  is bounded 

then 0lim =
∞→ nnn

ba . Use this result to show the following sequences converge to 0. 

      i.  
⎭
⎬
⎫

⎩
⎨
⎧

n
ncos    ii.  

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡ −+
+

+

!
)1(11ln1 1

2 nn

n

  iii.  
⎭
⎬
⎫

⎩
⎨
⎧ −+

n

nn

e2

)1(2  

 
10.  Find two limit points and subsequences, which converge to each of these points for 

        a.  
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −−

n
n 12)1(     b.  

⎭
⎬
⎫

⎩
⎨
⎧

4
sin πn  
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6. 4   Real Series 

6.4.1 Definition and Notations of Infinite Series 
        We may use sequences to define expressions of the form 

                 L+++
8
1

4
1

2
1 . 

       We call such an expression an infinite series. Since only finite sums may be added 
algebraically, we must define what is meant by this “infinite sum.” As we shall see, the 
key to the definition of infinite series is to consider the sequence of partial sums{ }nS , 
where Sk is the sum of the first k number of the infinite series. For the infinite sum above 
the partial sums are given by 

               S1 = 2
1   

               
4
3

4
1

2
1

2 =+=S  

               +=
2
1

3S
8
7

8
1

4
1

=+  

and so on. Thus, the sequence of partial sums {Sn} may be written as  

          ...,
16
15,

8
7,

4
3,

2
1 . 

It follows that  
                  Sn ∞→→ nas1 . 

 From intuitive point of view the more numbers of the infinite series that we add, the 
closer the sum gets to 1.Thus we write  

                    ...
8
1

4
1

2
11 +++=                      

and call 1 the sum of the infinite series. 
Definition 6.14 An infinite series (or simply a series) is an expression of the form  
                             ...321 +++++ naaaa L    
                      or in summation notation, 

                                      ∑
∞

=1n
na or  ∑ na  

                     Each number ak is a term of the series, and an is the nth term. 
Definition 6.15 i) The kth partial sum Sk of the series ∑ na is  
                                  Sk= ....321 kaaaa ++++  

                                 ii) The sequence of partial sums of the series ∑ na is  
                            S1, S2, S3, ... , Sn, ...  

Definition 6.16 A series ∑ na is convergent (or converges) if its sequence of   
                       partial sums {Sn} converges ,that is ,if  
                                     LSnn

=
∞→

lim  for some real number L. 



 Prepared by Tibebe-selassie T/mariam 151

                      Otherwise we say that the series ∑ na is divergent (or diverges). 

Note: Almost all series we will consider is of the form ∑
∞

=1n
na  or ∑

∞

=0n
na .Thus for 

∑
∞

=1n
na the jth partial sum is Sj= ...321 +++ aaa + ja and for  ∑

∞

=0n
na the jth partial sum 

is ...310 +++= aaaS j 1−ja . 
 
 Example 1: Show that  

                         ...
43

1
32

1
21

1
)1(

1
1

+
⋅

+
⋅

+
⋅

=
+∑

∞

=n nn
   

 
converges and find its sum. 
 
Solution: Using the partial sum representation of an we have 

               
1

1
11

)1(
1

≥
+

−=
+

= nfor
nnnn

an                      

consequently the jth partial sum Sj =∑
=

j

n
nS

1

of the series is given by 

Sj = .
1

111
1

1...
4
1

3
1

3
1

2
1)

2
11( ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
++⎟

⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −+−

jjjj
 

Since adjacent pairs of numbers cancel each other we have 

1
11
+

−=
j

S j  and thus 1
1

11limlim =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=
∞→∞→ j

S
jjn

. 

Thus the sequence converges and the sum of the series is 1. ◊   

The series ∑
∞

= +1 )1(
1

n nn
 is called telescopic series.  

Example 2: The series ∑ −− 1)1( n  diverges. 

Solution: Since we can write Sn as 

                           
⎩
⎨
⎧

=
evenisnif
oddisnif

Sn 0
1
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the sequence of partial sums {Sn}oscillates between 1 and 0, it follows that nn
S

∞→
lim  does 

not exist. Hence the series diverges. 

 Example 4: Show that the series ∑
∞

=1

1
n n

 diverges. 

 
Solution: Grouping the terms of the series as  

       LL +⎟
⎠
⎞

⎜
⎝
⎛ ++++⎟

⎠
⎞

⎜
⎝
⎛ ++++⎟

⎠
⎞

⎜
⎝
⎛ +++

16
1

10
1

9
1

8
1

7
1

6
1

5
1

4
1

3
1

2
11   

   we can see that  

         
2
112 +=S  

         ⎟
⎠
⎞

⎜
⎝
⎛+=+++≥+++==

2
121

4
1

4
1

2
11

4
1

3
1

2
11422 SS  

           ⎟
⎠
⎞

⎜
⎝
⎛+=+++++++≥+++++++==

2
131

8
1

8
1

8
1

8
1

4
1

4
1

2
11

8
1

7
1

6
1

5
1

4
1

3
1

2
11823 SS  

In general we arrange the making up S2
j into several groups and then substituting smaller 

values for the terms so that each group has sum 
2
1 . Consequently we get 

      ⎟
⎠
⎞

⎜
⎝
⎛+≥

2
112 jS j  and ∞=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+≥

∞→∞→ 2
11limlim jS

jjj
. 

Hence the sequence { }∞

=1jjS  of partial sums is unbounded, as we wished to prove, and 

thus ∑
∞

=1

1
n n

 diverges.  ◊  

Definition 6.17 The divergent series ∑
∞

=1

1
n n

 is called harmonic series.   

6.4.2 Divergence Test and Properties of Convergent Series 
Our next theorem which some times is called a divergence test (or nth term test) 

will tell us immediately that certain series diverge. 
 

Theorem 6.18  a. If  ∑
∞

=1n
na converges, then nn

a
∞→

lim =0. 

                       b.  If nn
a

∞→
lim is not zero (or does nor exist),then ∑

∞

=1n
na diverges. 

Question: Is the converse of the statement in theorem 2.5a. above always true? if not give 
example.  
    The next illustration shows how to apply the nth-term test to a series. 
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      SERIES                      nTH-TERM TEST                             CONCLUSION 

 ∑
∞

=

+
1

11
n n

                   0111lim ≠=+
∞→ nn

                         Diverges by thm.2.5 

 ∑
∞

=1
2

1
n n

                      01lim 2 =
∞→ nn

                            Further investigation is needed. 

∑
∞

=1

1
n n

                        01lim =
∞→ nn

                             Further investigation is needed.   

∑
∞

=1

2
n

n

n
                      ∞=

∞→ n

n

n

2lim                            Diverges. 

   
      We have seen that the third series is the harmonic divergent series and we shall see in 
the next section that the second series is converges. 
 
         One of  the very important series in solutions of applied problems is the geometric 

series which is of the form ∑
∞

=mn

ncr , where r and c are constants and c 0≠ .The 

convergence of geometric series ∑
∞

=mn

ncr depends entirely on the choice of r, as we see in 

the following theorem. 
 
 
Theorem 6.19 Let r be any number, and let c 0≠  and m 0≥ . Then the geometric series  

∑
∞

=mn

ncr converges if and only if 1<r and 

                                           ∑
∞

=mn

ncr =
r

cr m

−1
. 

Proof:  We consider the cases 11 <≥ randr  separately .If  1≥r , ncr c≥  for all 

n m≥  thus 0lim ≠
∞→

n

n
cr  consequently by theorem 2.18(b) the series diverges. If  1<r , 

then we use the identity 
                          (1-r)( 121 −++++ jrrr L )=1 jr−  
which implies that 
            (11 mjmmm

j crcrcrcrS =+++= −++ L 121 −++++ jrrr L ) 

                                                              =crm(
r

r j

−
−

1
1 ). 

Since 0lim =
∞→

j

j
r as 1<r , it follows that  

          
r

crr
r

crS
m

j

j

m

jj −
=−

−
=

∞→∞→ 1
)1(lim

1
lim .    ◊  
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 The number r is called the common ratio of the geometric series. By the 
Geometric Series theorem the sum of s convergent geometric series is equal to the first 
term (crm) divided by 1-r.    

Example 5    Show that 2
2
1

0

=⎟
⎠
⎞

⎜
⎝
⎛∑

∞

=

n

n

                           

 Solution: The common ratio of the series is 2
1=r ; hence the series is convergent by 

theorem 6.19. Since the first term is 1)( 0
2
1 =  we have 

 

                     ◊=
−

=⎟
⎠
⎞

⎜
⎝
⎛∑

∞

=

.2
1

1
2
1

2
1

0n

n

     

Example 6   Determine whether or not the series ∑
∞

=
−

+

−
0

1

3

5
3)1(

n
n

n
n  converges, and if so, find 

its sum. 

 Solution:   Since  ∑
∞

=
−

+

−
0

1

3

5
3)1(

n
n

n
n  =

n

n
∑

∞

=
⎟
⎠
⎞

⎜
⎝
⎛−

0 5
3135 and so the series is a geometric series 

with common ration 5
3−=r , it is convergent. Since the first term is ( ) 135135 0

5
3 = ,  the 

sum is given by 
 

                             ∑
∞

=
−

+

−
0

1

3

5
3)1(

n
n

n
n  =

8
675

)(1
135

5
3

=
−−

.      ◊          

Combination of Series  
 
The proof of the next theorem follows directly from Definition (6.3)  

Theorem 6.20 If ∑∑ nn banda are convergent series, then     

      i.  ∑ + )( nn ba  converges and   ∑ + )( nn ba =∑ ∑+ nn ba   

      ii.   ∑ nca  converges and    ∑ nca = ∑ nac    

      iii.   ∑ − )( nn ba  converges and    ∑ − )( nn ba =  ∑ ∑− nn ba  

Example 7   Show that the series ∑
∞

= +
+

1 )1(
6

3
8

n
n nn

 converge, and find its sum. 

Solution:  The series ∑
∞

=1 3
8

n
n  is a convergent geometric series of common ratio 

3
1

=r , 

first term 
3
8  and sum ∑

∞

=1 3
8

n
n = 2

1 3
1

3
8

=
−

.Moreover the series ∑
∞

= +0 )1(
6

n nn
  

 is the convergent telescopic series with sum  ∑
∞

= +0 )1(
6

n nn
=6. 

Consequently from theorem (2.20) we have 
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                  ∑
∞

= +
+

1 )1(
6

3
8

n
n nn

=  ∑
∞

=1 3
8

n
n  +  ∑

∞

= +0 )1(
6

n nn
= 4+6 =10.   ◊  

Exercise 6.4  
I. Compute the third, fourth and nth partial sums and find the sum of the series, 

if it converges.   

1.  ∑
∞

=1

1
n

     2.  ∑
∞

=

−
1

)1(
n

n              

3. ∑
∞

= ++
−

1 )32)(52(
2

n nn
   4.  ∑

∞

= −1
2 14
1

n n
 

II. Use the nth term test to determine whether the series diverges or needs further 
investigation. 

1.  ∑
∞

= −1 14
2

n n
n   2.  ∑

∞

=
⎟
⎠
⎞

⎜
⎝
⎛ +

1

11
n n

  3.  ∑
∞

=
⎟
⎠
⎞

⎜
⎝
⎛ +

1

1
2

tan
n n

π  4. ∑ n e
1  

III. Express the repeating decimals as a fraction. 

1.  2.0    2.  
___
32.2  

IV. Determine whether the following series converge and if so find its sum. 

      1.  ∑
∞

= ++1 )4)(3(
3

n nn
 2.  ∑

∞

=
−

+

1
1

3

5
3

n
n

n

    3. ∑
∞

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+1

1
)1(

1
n nnn

 4. ∑
∞

=

+

0 43
43

n
nn

nn

 

 
6.5 Convergence Tests for Nonnegative Terms Series 
 
In this section we will develop tests for convergence or divergence of a series ∑ na that 
employ the nth term. These tastes will not give us the sum S of the series, but instead will 
tell us only whether the sum exists. For the present we will restrict our attention to 
nonnegative series, that is, to series whose terms are nonnegative. For simplicity we 
assume that the initial index is 1. The sequence of partial sums {Sj} ∞

=1j  of the nonnegative 

series ∑ na form an increasing sequence:  
          1...... 112121 ≥=++++≤+++= ++ jforSaaaaaaaS jjjjj              

Consequently if  {Sj} ∞
=1j  is bounded, then jj

S
∞→

lim exists, so ∑
∞

=1n
na converges. By contrast, 

if {Sj} ∞
=1j  is unbounded, then jj

S
∞→

lim cannot exist, so  ∑
∞

=1n
na  diverges.    

 We now discuss four important convergence tests in the following theorems. 
6.5.1 The Integral Test 
Theorem 6.21   Let { }∞

=1nna  be a nonnegative sequence, and let f  be a continuous, 
decreasing function defined on [1, ∞ ) such that  
                                f(n)= an  for 1≥n  

 Then the series ∑
∞

=1n
na converges if and only if the integral ∫

∞

1
)( dxxf converges. 

Let us see how we can use theorem (6.21) in solving problems. 
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Example 1   Use the integral test to prove that the harmonic series  

                                   ∑
∞

=1

1
n n

 

diverges. 

Solution:   Let 
x

xf 1)( =  for 1≥x , then 
n

nf 1)( = . Since f is nonnegative valued 

function and decreasing we can apply the integral test: So 

             [ ] [ ] ∞=−===
∞→

∞

∞→∞→∫ ∫ 1lnlnlimlnlim1lim1

1 1
1 txdx

x
dx

x t

t
t

tt
 

thus the series diverges. 

Example 2   Determine whether the infinite series ∑
∞

=

−

1

2

n

nne converges. 

Solution:  Let 
2

)( xxexf −= for 1≥x  then
2

)( nnenf −= . f  is nonnegative-valued 

and since ,0)21(2)(' 22 222

<−=−= −−− xeexexf xxx  f  is decreasing on [1, ∞ ). We may 
therefore apply the integral test as follows: 

   [ ]
ee

edxxedxxe
tet

tx

t

t
x

t

x

2
11lim

2
1)(limlim 2

222 1
12

1

11

=⎥⎦
⎤

⎢⎣
⎡ −−=−==

∞→

−

∞→

−

∞→

∞
− ∫∫  

Hence the series converges. 
 
Definition 6.22   A p-series, or a hyperharmonic series, is a series of the form  

                   ∑
∞

=

+++++=
1

1
3
1

2
111

n
pppp nn

LL , 

where p is a positive real number. 

Example 3   Show that ∑
∞

=1

1
n

pn
 converges if and only if p>1. 

Solution:  If ,0≤p  then 01lim ≠⎟
⎠
⎞

⎜
⎝
⎛

∞→ pn n
 and, by theorem (6.18), the series diverges. If 

1=p , we have the divergent harmonic series. Hence from here on in the proof, we 
assume that .10 ≠> pandp We shall employ the integral test, defining the ideal 

function f  by                               11)( ≥= xfor
x

xf p . 

 Since f is continuous, ,1)( pn
nf = 0)(' 1 <−= −− ppxxf , and hence f is decreasing f 

satisfies the conditions stated in the integral test. Thus we have  

                           ).1(lim
1

1
1

limlim1 1

1

1

1 1

−
−

=⎥
⎦

⎤
⎢
⎣

⎡
−

== −

∞→

−

∞→

∞
−

∞→∫ ∫ p

t

tp

t

t
p

tp t
pp

xdxxdx
x

                 

   If p>1, then p-1>0 and the last expression may be written  

           
pp

t
p

p

t −
=−

−
=−

−
−

∞→ 1
1)10(

1
1)1(lim

1
1 1 , hence the improper integral converges 

consequently the p-series converges by theorem (6.8) if p>1. 
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      If 0<p<1, then 1-p>0 and  

           ∞=−
−

−

∞→
)1(lim

1
1 1 p

t
t

p
. 

Hence, by theorem (6.8), the p-series diverges.    ◊     
ILLUSTRATION                                                                                                           .  
                           
           p-SERIES                               VALUE OF p                   CONCLUSION 

   I       ∑
∞

=1
3

1
n n

                                p=3                            Converges 

  II       ∑
∞

=1
3

1
n n

                                        p=1/3                          Diverges 

Class Work 
Use the integral test to determine whether the series converges or diverges for the series: 

       a.   ∑
∞

=2

ln
n n

n                       b.   ∑
∞

=2
2)(ln

1
n nn

                          c.   ∑
∞

=

−

1

2 3

n  
n

ne    

         

       d.   ∑
∞

= +1
21

arctan
n n

n   

6.5.2 Basic Comparison Tests 
The next theorem allows us to use known convergent (divergent) series to establish the 
convergence (divergence) of other series. 
Theorem 6.23(Comparison Test)  
 Let ∑ na and ∑ nb be nonnegative-term series. 

   i.   If ∑ nb converges and nn ba ≤  for every positive integer n, then  ∑ na converges. 

  ii.   If ∑ nb diverges and  nn ba ≥  for every positive integer n, then  ∑ na  diverges. 

Example 4   Show that ∑
∞

= +1 43
1

n
n  converges. 

Solution:  Since 1
4
1

43
1

≥≤
+

nfornn , and the series ∑
∞

=1 4
1

n
n  is a convergent Geometric 

series it follows from theorem 6.23(a) that ∑
∞

= +1 43
1

n
n  converges.  

Example 5   Determine whether the series below converges or diverges. 

  a.  ∑
∞

= −2 1
1

n n
               b.   ∑

∞

=0

2

!
sin3

n n
n                   c.   ∑

∞

= −1 12
1

n
n  

Solution: a)  Since 21
1

1
≥≥

−
nfor

nn
 and the series ∑

∞

=2

1
n n

 is the divergent p- 

series with p=1/2, it follows from theorem 6.23(b) that the series  ∑
∞

= −2 1
1

n n
 diverges. 
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b) Since 0
!

3
!

sin3 2

≥≤ nfor
nn

n and e
nn nn

3
!

13
!

3
00

== ∑∑
∞

=

∞

=

,it follows from theorem 6.23 b) 

    that the series ∑
∞

=0

2

!
sin3

n n
n converges. 

c) It might be tempting to compare the give series with the convergent series ∑
∞

=1 2
1

n
n . 

However, 

                       1
2
1

12
1

≥≥
−

nfornn  

and thus it is impossible to determine the convergence or divergence  of the given series 

by comparing it  with the series ∑
∞

=1 2
1

n
n . But we can see that  

                1
2

1
)12(2

1
22

1
12

1
111 ≥=

−
=

−
≤

− −−− nfornnnnn  

and since ∑
∞

=
−

1
12

1
n

n  converges, the comparison test implies that the given series converges. 

Class work:  Determine whether the following series converges or diverges. 

  a.  ∑
∞

= ++1
24 1

1
n nn

             b.   ∑
∞

=1

arctan
n n

n                    c.   ∑
∞

= +1
3

2

1n n
n  

Theorem 6.24(Limit Comparison Test) 
Let ∑ na and ∑ nb be nonnegative series.  

            a.   If  
n

n

n b
a

∞→
lim =L>0, then either both series converge or both diverge. 

            b.   If   
n

n

n b
a

∞→
lim =0  and   ∑ nb converges, then  ∑ na also converges. 

c.   If   
n

n

n b
a

∞→
lim  = ∝ and  ∑ nb converges, then  ∑ na also converges. 

To find a suitable series ∑ nb to use in the limit comparison test when an is a 
quotient, a good procedure is to delete all terms in the numerator and denominator of an 
except those that have the greatest effect on the magnitude. We may also replace any 
constant factor c by 1. 
Example 6   Determine whether the series converges or diverges: 

     a.   ∑
∞

= −+
+

1
35

2

27
12

n nn
n                        b.   ∑

∞

= +1
3 2 1

1
n n

 

Solution:   a.   Let 
27

12
35

2

−+
+

=
nn

nan  then deleting terms of least magnitude both from 

the numerator and denominator we get 35

2 22
nn

n
= . If we choose 3

1
n

bn = , the series  
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∑ ∑
∞

=

∞

=

=
1 1

3

1
n n

n n
b  will be a convergent p-series (with p=3). Since  

                                 ,02lim
3

35

2

1
17

12

>=−+
+

∞→
n

nn
n

n
   

it follows from limit comparison test (a) that the series ∑
∞

= −+
+

1
35

2

27
12

n nn
n converges. 

b.  Let =na
3
2

1

1

1
3 2 n

bchoosemaythenwe
n

n =
+

. Since the series ∑ 3 2

1
n

 is a 

divergent p-series (with p=2/3) and  

                               01
1

1

1

lim

3 2

3 2
>=+

∞→

n

n
n

 

it follows from limit comparison test (a) that the series ∑
∞

= +1
3 2 1

1
n n

  diverges. 

Example 7 Test the series ∑
∞

=1

ln
n n

n  for convergence or divergence. 

Solution: Let nbandna nn /1ln/ == , we have 

   ∞===
∞→∞→∞→

n
n
n

b
a

nn
n

n

n
lnlim

/1
ln/limlim  

We know that the harmonic series ∑
∞

=1

1
n n

 is divergent so, by part (c) of the Limit 

Comparison Test, ∑
∞

=1

ln
n n

n  is also divergent.  

Class Work: Determine whether the series converges or diverges: 

  a.   ∑
∞

= ++
+

1
3 32

ln
n nn

nn                                      b.   ∑
∞

=1

1sin
n n

                              c.  ∑
∞

= +1
3

2

1n n
n             

6.5.3 The Ratio Test and the Root Test 
The ratio test and the root test are tests that involve only the terms of the series 

being tested; it is not necessary to manufacture another series, an improper integral, or 
anything else against which to compare the given series.  
Theorem 6.25 (Ratio Test) 
Let ∑ na be a nonnegative series. Assume that 0≠na  for all n and that  

               )(lim 1 ∞=+

∞→
possiblyr

a
a

n

n

n
 

a.   If  10 <≤ r  then ∑ na converges. 
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b.   If r>1, then ∑ na diverges. 
If r=1, then from this test alone we cannot draw any conclusion about the convergence of 
∑ na . 
Example 1   Determine whether the series converges or diverges. 

 a.   ∑
∞

=0 2
!

n
n

n                        b.   ∑
∞

=1

2

2n
n

n                              c.   ∑
∞

=1

!
n

nn
n  

 
Solution: a.   Applying the ratio test we have 

                
n

n

n a
a 1lim +

∞→
= ∞=

+
=⋅

+
∞→+∞→ 2

1lim
!

2
2

)!1(lim 1

n
n

n
n

n

nn
. 

 
Since )1,0[∉r , the series diverges by theorem (2.25). 

b. Since =r
n

n

n a
a 1lim +

∞→
=

2
11

2
1lim

2/
2/)1(lim

2

2

12

=⎟
⎠
⎞

⎜
⎝
⎛ +

=
+

∞→

+

∞→ n
n

n
n

nn

n

n
 and r<1 by the ration test     

     the series  ∑
∞

=1

2

2n
n

n   converges. 

c.   Since   =r
n

n

n a
a 1lim +

∞→
= 11

)/11(
1lim

)1(
lim

/!
)1/()!1(lim

1

<=
+

=
+

=
++

∞→∞→

+

∞→ enn
n

nn
nn

nnn

n

nn

n

n
 

consequently from theorem 6.25 that the series ∑
∞

=1

!
n

nn
n  converges. 

Theorem 6.26 (Root Test) 
 Let ∑ na be a nonnegative series. Assume that   

                              )(lim ∞=
∞→

possiblyran
nn

 

a.   If  10 <≤ r  then ∑ na converges. 

b.   If r>1, then ∑ na diverges. 
If r=1, then from this test alone we cannot draw any conclusion about the convergence of 
∑ na . 
Example 2   Determine the convergence or divergence of  
 

      a.   ∑
∞

=
⎟
⎠
⎞

⎜
⎝
⎛

1 lnn

n

n
n                  b.   ∑

∞

=1 3n
n

n                c.   
n

n n∑
∞

=
⎟
⎠
⎞

⎜
⎝
⎛ +

1

11             
n

nd ∑ ⎟
⎠
⎞

⎜
⎝
⎛

4
. π  

Solution:  a.   Applying the root test we have 

                          ∞==⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=

∞→∞
∞

∞→∞→ nn
n

n
nr

nn
n

n

n /1
1lim}{

ln
lim

ln
lim >1. 

Since r>1, the series diverges. 
b.   Applying the root test and the fact that  1lim =

∞→

n

n
n  we have  
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3
1

3
lim

3
lim

1

==⎟
⎠
⎞

⎜
⎝
⎛=

∞→∞→

n

n

n

nn

nnr <1. 

Hence the series converges.                ◊  
The c) and d) are left as exercise.    

6.6   Alternating Series Test 
If the terms in a series are alternately positive and negative, we call the series an 
alternating series. For instance, the series 

                         ( ) L−+−+−=−∑
∞

=

11111
1n

n  

and                    ( ) L+−+−=−∑
∞

=

+

24
1

6
1

2
11

!
11

1

1

n

n

n
 

are alternating series. 
 
Theorem 6.27 (Alternating Series Test) 
Let {an} ∞

=1n  be a decreasing sequence of positive numbers such that .0lim =
∞→ nn

a  Then the 

alternating series ∑
∞

=

−
1

)1(
n

n
n a and ∑

∞

=

+−
1

1)1(
n

n
n a converge. Furthermore, for either series 

the sum S and the sequence of partial sums { }∞

=1jjS  satisfy the inequality 

                                      1+≤− jj aSS  
Example 1   Show that the alternating harmonic series 

                     ( )∑
∞

=

− +−+−=−
1

1 ...
4
1

3
1

2
1111

n

n

n
 

converges. 
Solution:   Let an=1/n, since an=1/n > 1/n+1 =an+1 the sequence {an} is a decreasing, 
nonnegative sequence such that .0lim =

∞→ nn
a  Therefore the alternating harmonic series 

satisfies the conditions of the Alternating Series Test and consequently must converge. 
Example 2   Determine the convergence or divergence of the alternating series: 
 

        a.   ( )∑
∞

=

−

−
−

1
2

1

34
21

n

n

n
n                                   b.    ( )∑

∞

=

−

−
−

1

1

34
21

n

n

n
n  

Solution:  a.   Let   
34

2
2 −

=
n

nan . 

 In applying the alternating series test, we must show that 
           i. {an}is decreasing  
          ii. 0lim =

∞→ nn
a  

There are several ways to prove (i). One method is to show that the ideal function to an, 

34
2)( 2 −

=
x

xxf  is decreasing for x≥1. So finding the derivative of f we have 
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                                      22

2

)34(
)8(22)34()('

−
−−

=
x

xxxxf  

                                                
.0

)34(
68

22

2

<
−

−−
=

x
x

 

Hence f is decreasing and, therefore, f(n)≥f(n+1); that is, an ≥ an+1 for every positive 
integer k. 
       To prove (ii), we see that  

                                              0
34

2limlim 2 =
−

=
∞→∞→ n

na
nnn

 

Thus, by the alternating series test the series is convergent. 

b.   we may show that 
⎭
⎬
⎫

⎩
⎨
⎧

− 34
2
n

n  is decreasing; however, 

                  ,0
2
1

34
2lim ≠=

−∞→ n
n

n
 

and hence the series diverges. 
Example 3   Prove that the series 

  ...
)!12(

1)1(...
!5

1
!3

11 1 +
−

−+−+− −

n
n  

is convergent, and approximate its sum S to five decimal places. 
Solution: The nth term )!12/(1 −= nan  has the limit 0 as ∞→n , and 1+> kk aa  for 
every positive integer k. Hence the series converges, by the alternating series test. If we 
use nS  to approximate S, then, by Theorem (6.27), the error involved is less than or equal 
to )!12/(11 +=+ nan . Calculating several values of ,1+na  we find that for n = 4, 

    .000005.00000028.0
!9

1
5 <≈=a  

Hence the partial sum S4 approximates S to vive decimal places. Since 

   
,841468.0

5040
1

120
1

60
11

!7
1

!5
1

!3
114

≈−+−=

−+−=S
 

we have .84147≈S  
 It follows from the next section that the sum of the given series is ,1sin and hence 

.841471sin ≈  
Class Work  
 
Determine whether the series converges or diverges. 

  a.   ( )∑
∞

=

−
2 ln

11
n

n

n
        b.  ( )∑

∞

=

−
1

coth1
n

n n .                            c.   ∑
∞

=3

cos
n n

nπ  



 Prepared by Tibebe-selassie T/mariam 163

6.7 Absolute and Conditional Convergence 
 The following theorem is very useful in investigating the convergence of a series 
that is neither nonnegative nor alternating. It allows us to use tests that are applicable for 
nonnegative term series to establish convergence for other types of series. 

Theorem 6.28   If ∑
∞

=1n
na  converges, then ∑

∞

=1n
na converges. 

Proof  If we let nnn aab +=  and use the property nnn aaa ≤≤−  we have 

  ,20 nnn aaa ≤+≤  or .20 nn ab ≤≤  

If ∑
∞

=1n
na  is convergent then from the convergent properties of series we know that 

∑
∞

=1

2
n

na  is convergent. If we apply the basic comparison test, it follows that ∑
∞

=1n
nb is 

convergent. And again by the convergent properties of series ( )∑
∞

=

−
1n

nn ab  is convergent. 

Since ,nnn aab =− ∑
∞

=1n
na is convergent. 

Example 1   Prove that the alternating series  

  ( ) L+−+−=⎟
⎠
⎞

⎜
⎝
⎛−∑

∞

=

−
333

1

3
1

4
1

3
1

2
1111

n

n

n
 

 converges. 

Solution: Since ( )
3

11

3
1 111 ∑∑

∞

=

∞

=

− ⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛−

nn

n

nn
is a convergent p-series with p=3, from  

Theorem (6.28)  the series ( )∑
∞

=

− ⎟
⎠
⎞

⎜
⎝
⎛−

1

3
1 11

n

n

n
converges.      ◊  

Example 2   Show that the series∑
∞

=1
2

4/cos
n n

nπ converges. 

Solution: Calculating a few values of 4/cos πn , we can see that the series is neither 
nonnegative nor alternating. Thus none of the earlier tests applies directly to it. However, 
since  

    22

14/cos
nn

n
≤

π  for n 1≥     

 

and ∑
∞

=1
2

1
n n

 converges because it is a p-series with p=2, we know by the comparison test 

that the series ∑
∞

=1
2

4/cos
n n

nπ  converges. Consequently Theorem (6.28) tells us that the 

given series is convergent.   ◊  
Oral Question:  Is the converse of theorem (6.28) always true? 
The following definition gives us two special names of series. 
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Definition 6.29   Let ∑
∞

=1n
na be convergent series. If ∑

∞

=1n
na  converges, we say that the 

series∑
∞

=1n
na converges absolutely. If∑

∞

=1n
na diverges, we say that the series  ∑

∞

=1n
na   

converges conditionally. 
 

Example 3 The alternate harmonic series ( ) ⎟
⎠
⎞

⎜
⎝
⎛−∑

∞

=

−

nn

n 11
1

1  is conditionally convergent 

while the series ∑
∞

=1
2

4/cos
n n

nπ   is absolutely convergent. Note also that all convergent 

nonnegative series converge absolutely. 
 
Class Work  2. Determine the following series converges conditionally or absolutely: 
 

  a.   ( )∑
∞

=

+

+
−

1

1

43
11

n

n

n
     b. ( )∑

∞

=

−

2 )(ln
1

n

n

nn
  c.  ∑

∞

=

−

1 !
)10(

n

n

n
                

6.8 Generalized Convergence Tests 
By combining Theorem (2.15) with our tests for nonnegative series, we obtain 

convergence tests that apply to any series, nonnegative or not. 
 
Theorem 6.30   (GENERALIZED CONVERGENCE TESTS) 

Let ∑
∞

=1n
na be a series. 

a. Generalized Comparison Test. If na nb≤  for n ,1≥ and if ∑
∞

=1n
nb  converges, then  

      ∑
∞

=1n
na  converges (absolutely). 

b. Generalized limit Comparison Test. If ,/lim Lba nnn
=

∞→
where L is a positive  

     number, and if ∑
∞

=1

||
n

nb converges, then ∑
∞

=1n
na converges(absolutely). 

c. Generalized Ratio Test. Suppose that 10 ≥≠ nforan and that  

)(
1

lim ∞=
+

∞→
possiblyr

a
a

n

n

n
 

     

            If r<1, then ∑
∞

=1n
na converges (absolutely). If r>1, then∑

∞

=1n
na diverges. 

            If r=1, then from this test alone we cannot draw any conclusion about the 
           convergence of the series. 
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d.  Generalized Root Test. Suppose that  
)(lim ∞=

∞→
possiblyran

nn
 

     

            If r<1, then ∑
∞

=1n
na converges (absolutely). If  r>1, then ∑

∞

=1n
na diverges. 

            If r=1, then from this test alone we cannot draw any conclusion about the 
           convergence of the series.  

Example 3   Show that the series∑
∞

=1n

n

n
x converges absolutely for 1<x , converges 

conditionally for x=-1 and diverges for x=1 and for .1>x   
Solution:   If x=0, the series converges. If ,0≠x  then  

  xx
n

n
nx

nx
nn

n

n
=

+
=

+
∞→

+

∞→ 1
lim

/
)1/(lim

1

. 

Therefore the Generalized Ratio Test implies that the given series converges for 1<x  

and diverges for .1>x For x=1 the series becomes the harmonic series ∑∞

=1
/1

n
n , which 

diverges. For x=-1 the series becomes 
( )∑

∞

=

−

1

1
n

n

n
 

This is the negative of the alternating harmonic series and consequently converges. Since 

     ( )∑ ∑
∞

=

∞

=

=
−

1 1

11
n n

n

nn
 

which diverges, we conclude that ( )∑∞

=
−

1
/1

n
n n  converges conditionally.     ◊  

Example 4   Show that  

  ( )
L+−+−=

+
−∑

∞

=

+

0

753
12

75312
1

n

n
n xxxxx

n
 

converges absolutely for ,1<x  converges conditionally for 1=x , and diverges for 

.1>x  
Solution:  If x=0, the series converges. If ,0≠x  then we have 

  
( )

( )
22

12
12

1

1)1(2
1)1(2

1

32
12limlim xx

n
n

x

x
nn

n

n
n

n n

n

=
+
+

=
∞→+

+
−

++
++

−

∞→
 

 
Consequently the Generalized Ratio Test implies that the series converges absolutely for 

1<x and diverges for .1>x It remains to consider the cases in which .1=x For 1−=x  
The series becomes 

    ( ) ( )∑ ∑
∞

=

∞

=

+

+
−

=
+

−−

0 0

1

12
1

12
1

n n

nn

nn
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and this converges by the Alternating Series Test. For x=1 the series reduces to 

    ( )∑
∞

= +
−

0 12
1

n

n

n
 

which also converges by the Alternating Series Test. It is easy to show by using the 
Integral Test or the Limit Comparison Test that  

    ∑
∞

= +0 12
1

n n
 

diverges. Hence the given series converges conditionally for ◊= .1x  

Corollary 6.18   Let {an} ∞
=1n  be a sequence. If  

   orr
a

a

n

n

n
1lim 1 <=+

∞→
 ran

nn
=

∞→
lim <1 

  then       
   0lim =

∞→ nn
a  

Class Work:   1.  Show that 0
!

lim =
∞→ n

xn

n
for all x. 

2. Show that the series∑
∞

=1

!
n

n
n x

n
n converges for .ex <  
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Worksheet VII 
1. Give the fourth, fifth, and nth partial sums of  

a.   ( )∑
∞

=

−
0

1
n

n      b.   ∑
∞

= ++1 )75)(25(
5

n nn
      c.∑

∞

=
⎟
⎠
⎞

⎜
⎝
⎛ −

1

1
2

sin
n n

π        ( )∑
∞

=

−−−
1

1 41.
n

nnd    

2. Use the nth term test to determine whether the series diverges or needs further 
investigation. 

a.   ∑
∞

=1

sin
n

nπ   ∑
∞

=
⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛ +

1

11ln11.
n nn

b   ∑
∞

=1

1sin.
n n

nc  

 

      d. ∑
∞

= +1 )1ln(n n
n   e.   ∑

∞

=
⎟
⎠
⎞

⎜
⎝
⎛

−1 57
2ln

n n
n  

3. Determine whether the following series converge and if so find its sum. 

a.   ∑
∞

= −+
−

1
2 239

1
n nn

          b.   ∑
∞

=
⎟
⎠
⎞

⎜
⎝
⎛

+1 1
ln

n n
n   c.   ∑

∞

= ++1 1
1

n nn
       

 

d.   ∑
∞

= ++1 )2)(1(
1

n nnn
         e. ( )∑

∞

=
+−

1
22

31
n

n

n
n               f.∑

∞

=
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

+
−⎟

⎠
⎞

⎜
⎝
⎛

1 1
1sin1sin

n nn
    

g. ∑
∞

=

+

1 6
23

n
n

nn

         h.  ∑
∞

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

2
2

2 1ln
n n

n   i.  ∑
∞

= +
+

1
22 )1(

12
n nn

n  

 
4. If the nth partial sum of a series ∑∞

=1n na is  

1
1

+
−

=
n
nsn       find an  and  ∑∞

=1n na . 

5. Find the value of x for which the series converges, and find the sum of the series 
for 
a.   LL +−++−+− −− 1132 )1(1 nn xxxx  

b.   LL +
−

++
−

+
−

+ +1

2

2
)3(

8
)3(

4
)3(

2
1

n

nxxx  

6. Use CT, LCT, IT, RaT, or Root Test to determine whether the series below 
converges or diverges: 

a.  ∑
∞

=1
2

1
n

ne
  b.  ∑

∞

=1 5n
n

n     c.  ∑
∞

=1 2
3

2cos
n n

n   d.  ∑
∞

=1
2

1sin
n n

 

 

e.  ∑
∞

= +
+

1

2

3
2

n
n

n

n
n   f.  ∑

∞

=

+
1

)
2
11ln(

n
n    g.  ∑

∞

= +
+

1 5
2sin

n
n

n

n
n  h.  

( )∑
∞

=1
2!
!2

n n
n  

 

i.  ∑
∞

=
⎟
⎠
⎞

⎜
⎝
⎛

1

!
n

n

nn
n   j.∑

∞

= ⋅⋅
−⋅⋅

1 )2(642
)23(741

n n
n

L

L    k.  ∑
∞

=1 !/1cos
!/1sin

n n
n  l.  ∑ ∑

∞

= =

⎟
⎠

⎞
⎜
⎝

⎛

1 1

1
n

nn

k k
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7. Find every real number k for which the series below converge. 

a.   ∑
∞

=1 ln
1

n
k nn

     b.   ∑
∞

=1 )(ln
1

n
knn

 

 
8. Determine whether the series is absolutely convergent, conditionally convergent, 

or divergent. 

a.  ( )∑
∞

=

−

+
−

1

1

12
11

n

n

n
    b.  ( )∑

∞

=

−
1

2

arctan1
n

n

n
n          c.  ∑

∞

=1
2
6
1cos

n n
nπ

 

d.   ( )∑
∞

=

−

1 !
10

n

n

n
      e.  ( ) ( )∑

∞

=

−+−
1

11
n

n nn           d. ( ) ( )∑
∞

=

−+−
1

2 11
n

n nn   

9. Discuss the convergence of the following series 

a.   L+
⋅⋅

⋅
+

⋅⋅
⋅

+
⋅⋅

⋅
765

43
654

32
543

21    

b.   L+
⋅⋅

+
⋅

+
642

!5
42
!3

2
1   

c.   L+
+

+
+

+
+ 22222 3

1
2

1
1

1
xxx

     for real of x. 

d.   L+
+

+
+

+
+ 32 31

1
21
1

1
1

xxx
        for positive values of x. 

e.  
⎪
⎩

⎪
⎨

⎧ −
=∑

∞

= squarperfectanotisnif
n

squareperfectaisnif
ncwherec n

n
n

2
1 1

1

,  

e.   ∑
∞

=1
,

n
nc  where 

⎪
⎩

⎪
⎨

⎧ −
=

.int
4
11

.int
4
11

2 egerannotisnif
n

egeranisnif
ncn   

10. A series ∑ na is defined recursively by the equations 

nn a
n

naa cos2,1 11
+

== +  

 Determine whether ∑ na  converges or diverges. 

11. If ∑ na  is convergent and ∑
∞

=1n
nb is divergent, show that the series ( )∑ + nn ba  is 

divergent. 

12. Consider ∑
∞

= +1 )!1(n n
n  

a) By using the pattern of the partial sums the first four partial sums guess a 
formula for the nth partial sum. 

b) Use mathematical induction to prove your guess. Show that the given 
infinite sum is convergent and find its sum. 
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	Vectors in R3 

	Definition 2.3 Let   and   be vectors in R3. Then  
	Since  =   by definition 1.3ii we have 


	2.2 Dot (Scalar) Product 
	Observe that if  the norm of a is given by  
	In particular  
	The other important result that we get from theorem 1.11 is that  
	Example 2  a) The vector 0 is perpendicular to every vector in R2 
	Prab =  
	Prab =   

	Prab =  . 
	Since the magnitude of   is 1, it follows from the last equation that 
	Observe in Example 5 above that 



	2.3 Cross (Vector) Product 
	On expanding the squares, this can be rewritten as 
	Thus 
	Example 4 Find the volume of the parallelepiped having adjacent edges defined by the points A(1,1,3), B(3,7,1), C(-2,3,3), D(1,2,8). 
	The volume of the parallelepiped is thus 


	2.4 Lines and Planes in R3 
	2.4.1 Equations of Lines in Space 
	And from equation (2) we give the parametric equation of the line by 
	Consequently the parametric equations of the line are given by 


	2.4.2 Equations of Planes in R3 
	PP 
	 
	 
	 
	 
	 
	Solution: setting   
	Exercise 1 





	3 Limit and Continuity 
	3.1  Definition of Limits 
	L+( 
	          L 
	 L-(       
	Definition 3.2   if and only if for every (>0, there is a (>0 such that if x is in the open interval (a – (, a +() and x ( a then f(x) is in the open interval (L –(, L + (). 
	Theorem 3.3 If   and   then L=M. 



	3.2  Examples on limit 
	Hence, we let  
	Solution: 
	Example 8:  



	3.3  One-Sided Limits 
	Example 9 Show that   
	Solution: Let ( > 0 be given we need to show there is a (>0 such that  


	3.4  Infinite Limits and Infinite Limits at infinity  
	Infinite Limits 
	There are analogous definitions for the limits 
	Once more for any N>0 
	Limits at Infinity 
	Definition 3.7 a)   if for every (>0 there is a number M such that  
	Example 11 Show that   
	Solution: Let (>0. To show that   we must find an M such that  
	Infinite Limits at infinity 
	Note the definition of 
	Example 12 Show that   


	3.5  Limit Theorems 
	   etc 
	Example 13 Find   
	Example 14 Find    

	Since   , we have  
	Example 16 Prove that  does not exist 
	Consequently  
	Example 17 Find   
	Since   
	Moreover   thus by the squeezing theorem we have 
	Example 20 Find   
	Solution: Simplifying   we can evaluate the limit as below 
	Class work 


	3.6 Continuity of a Function and the Intermediate Value Theorem 
	Class work 
	Continuity on interval 
	Class Work  
	Example 24 Show that there is a root of the equation 
	Class Work 



	4 Derivatives  
	4.1 Definition and Properties of Derivative; the Chain Rule 
	Therefore  
	Class work 
	The Chain Rule  
	Example 2 Find   
	Solution: Let   consequently  Then  
	Therefore  
	 
	 
	Class Work 


	4.2  Inverse Functions and Their Derivatives  
	4.2.1 Inverse Functions 
	Properties of Inverses 
	Guidelines for finding   is simple cases 
	Now as guideline 2, we consider the equation  
	Since we customarily use x as the independent variable, we replace y by x to obtain 
	As in guideline 2, we consider the equation 
	Since x is nonnegative, we reject   and let 
	Graphs of Inverse Functions 
	Exercise 4.1 


	4.2.2 Continuity and Differentiability of Inverse Functions 
	Exercise 4.2   

	4.2.3 Inverse Trigonometric Functions 
	The Arcsine Function 
	We also see from the property of inverse functions that 
	The Arccosine Function 
	Example 2 Evaluate 
	The Arctangent Function 
	Example 4   
	Exercise 4.3  
	Derivatives and Integrals  
	Theorem 3.1   
	Example 1 Find  

	Theorem 3.2 
	Example 2 Evaluate   
	Example 3  Evaluate   
	Exercise 3.3  


	4.2.4 Hyperbolic Functions 
	Definition 3.3  
	Hyperbolic Identities   
	Theorem 3.4  
	Theorem 3.5 

	Exercise 3.4  

	4.2.5 Inverse Hyperbolic Functions 
	Theorem 3.6 
	Proof: To prove (1), let  Then 
	Solving by the quadratic formula, we get 
	Since   and  , we must have  
	The equivalent logarithmic form is 
	Theorem 3.7 
	 
	Exercise 3.5 

	4.2.6 L‘Hôpital’s Rule  
	The Indeterminate Form 0/0 
	The Indeterminate Form (/( 
	Other Indeterminate Forms 


	4.3 Implicit Differentiation Problems  
	4.4  Application of the derivative  
	4.4.1  Extrema of a function 
	Maximum-Minimum Theorem  
	In using theorem 5 to find the extreme value we followthe three-step procedure bellow. 
	Class Work  

	4.4.2  The Mean Value Theorem 
	Class Work 

	4.4.3  First and Second Derivative Tests; Curve sketching  
	Class Work 
	Definition 10 A point (a,b) on a curve is called a point of inflection if the curve changes from concave upward to concave downward or from concave downward to concave upward at (a,b). 
	Example 7 Determine where the curve   is concave upward and where it is concave downward. Find the inflection points and sketch the curve. 




	5 Review of Techniques of Integration 
	5.0  Introduction 
	5.1 Integration by Substitution 
	Method of Substitution  
	Guidelines for changing variables in indefinite integrals 
	Example 4   Evaluate   
	Example 6   Evaluate   


	5.2  Integration by parts 
	Integration by parts formula 
	Exercise 1.2 


	5.3  Integration by Partial Fractions 
	Exercise 1.3 

	5.4  Trigonometric Integrals  
	5.5  Trigonometric Substitutions 
	Trigonometric Substitutions 

	5.6  Improper integrals 
	1.6.1 Integrals Over Unbounded Intervals 
	1.6.2 Integrals with Unbounded Integrands 
	Exercise 1.6 


	5.7  Application of the Integral 
	Reversing the roles of x and y 
	Volume  
	The cross –section method 

	Class work 
	The Disc Method 



	6   Sequences and Series 
	6.1   Definition and Notions of Sequence 
	Exercise 2.1 

	6.2   Convergence of Sequences 
	6.2.1 Convergence Properties of Sequences 
	6.2.2 Bounded Monotone Sequences  

	6.3   Subsequence and Limit Points 
	Worksheet  
	6. 4   Real Series 
	6.4.1 Definition and Notations of Infinite Series 
	6.4.2 Divergence Test and Properties of Convergent Series 
	6.5.2 Basic Comparison Tests 
	6.5.3 The Ratio Test and the Root Test 

	6.6   Alternating Series Test 
	6.7 Absolute and Conditional Convergence 
	Proof  If we let   and use the property   we have 

	6.8 Generalized Convergence Tests 
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