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1 Matrices and Systems of Linear Equations

1.1 Definition of a Matrix and Basic Operations
Definition 1.1 A matrix is any rectangular array of real numbers or variables of the form

a, a, - a,
A, Ay Ay, (1)
a a a

ml m2 mn

The numbers or the variables in the matrix are called entries or elements of the matrix. If
a matrix has m rows and n columns then we way that its size is m by n (mxn) matrix. An
nxn matrix is called a square matrix or a matrix of order n. A 1x1 matrix is simply a
real number. Matrices will be denoted by capital bold-faced letters A, B, etc, or by (aj)) or

(bj). For instance if
-2 6 (2)then Aisa

10 3
A:(zssj 5=
T e 3

2x3 matrix while B is a 3x3 square matrix or a matrix of order 3. The entry in the ith row
and jth column of an mxn matrix A is written a;.. For an nxn square matrix, the entries
a,,,a,,,8;;,...,a,, are called the main diagonal elements. The main diagonal entries for the

matrix B in (2) are 5, -2, ﬁ .

5 1 0

W=

Definition 1.2 Column and Row Vectors
An nx1 matrix

is called a column vector. A 1x n matrix, (a1 ¥ T an) is called a row vector.
Special Matrices
In matrix theory there are many special kinds of matrices that are important because they
posses certain properties. The following is a list of some of these matrices.
e A matrix that consists of all zero entries is called a zero matrix and is denoted by 0.

0 0

0 0 0
For example 0 = 0= 0=(0 O
0 0 0 0 0

e Ann x nmatrix A is said to be a triangular matrix if all its entries below the main
diagonal are zeros or if all its entries above the main diagonal are zero, [in other
words a square matrix A is triangular if a;; = 0 for i>j or a;; = 0 i <j.] More specially,
in the first case the matrix is called upper triangular and in the second case the
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matrix is called lower triangular. The following are triangular matrices.

-20 0 0 O
1 2 3 3
6 0 0 O
0 5 6 2
8 9 3 00
0 0 9 2
1 1T 2 0
0 0 0 7
I5 2 3 4 2
Upper triangular matrix Lower triangular matrix

e Ann x nmatrix A is said to be a diagonal matrix if all its entries not on the main

diagonal are zeros. In terms of the symbolism D = (d;) .., D is a diagonal matrix if
d, 0 - 0
o . o 0 d, - 0
d; =0 for i # j. The matrix D thus is given by D = f : 3 3)
O 0 --- d

nn

e Ifin (3) if all the diagonal elements are equal, it is referred to as a scalar matrix S,,,
and if these elements are equal to 1, we have a unit or an identity matrix I, of order n.

c 0 - 0 1 0 -~ 0
0 ¢c - 0 01 - 0
Thus S, =| . . . l,=. . :
0 0 --- ¢ 00 - 1

are respectively a scalar and an identity matrix.
Operations on Matrices
Definition 1.3 Equality of Matrices
Two n x n matrices A and B are equal if a; = by for each i and j.

In other words, two matrices are equal if and only if they have the same size and their
corresponding entries are equal.

Matrix Addition

When two matrices A and B are of the same size we can add them by adding their
corresponding entries.

Definition 1.4 If A and B are m x n matrices, then their sum is

A+B=(a; +by) -
Example 1: Addition of Two Matrices.
2 -1 3 4 7 -8
a) Lee A=| 0 4 6| and B=|9 3 5 |then
-6 10 -5 I -1 2
2+4 —1+7 3+(-98) 6 6 -5
A+B=| 0+9 4+3  6+5 |=| 9 7 11}
—6+1 10+(=1) -5+2) (-5 9 -3
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b) The sum of

1 2 3 1 0
A= and B=
L Lo

is not defined, since A and B are of different sizes.
Definition 1.5 Scalar Multiplication of a Matrix.
If k is a real number, then the scalar multiple of a matrix A is

ka,, ka, - Kka,
ka, ka,, -+ Kka,,

KA = : : f = (kaij)mxn
ka,, ka,, - Kka,,

In other words, to compute kA, we simply multiply each entry of A by k. For instance, from
L (2 —3] (5-2 5-(—3)) (10 —15j
definition 2.5, 5 = = .
4 -1 5:4 5-(-1) 20 -5

The difference of two m x n matrices defined in the usual manner A —B =A+(-B) where —1B
=-B.
Properties of Matrix Addition and Scalar Multiplication
Suppose A, B, and C are m x n matrices and o and [ are scalars. Then

1) A+B=B+A (Commutative law of addition)

i1) (A+B)+C=A+(B+ C)(Associative law of addition)

iii) ow(A+B)=aA+aB

1v) (a+B)A=0A+BA

v) (o)A =a(BA)

vi) IA=A
Note: Each of the above six properties can be proved by using Definition 2.4 and 2.5.

1.2 Product of Matrices and Some Algebraic Properties, Transpose

Definition 2.6 Let the number of columns in matrix A be the same as the number of rows
in matrix B, then the matrix product AB exists and the element in row i and column j of
AB is obtained by multiplying the corresponding elements of row i of A and column j of
B and adding the product.

In other words if matrix A has n column and matrix B has n rows then the ith row of A is

b

1j
i1> 2o+ Hin

b,.
(a,,a a.,) and the jth column of B ?J . Thus if C = AB then

b

nj

n
Cy =ayby; +apby; +...+a,b, =D a,by.
k=1

Moreover the number of rows and the number of columns of C are equal to the number
of rows of A and the number of columns of B, respectively. Thus
A B C

Mmxn nNxr mxr
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Example 1 If

1 2
3 4 21
3 4
A=l1 2 3 1 B=
1 0
01 2 3
-1 1

3+12+2-1 6+16+0+1 16 23

Then AB=| 1+6+3-1 2+8+0+1 |=| 9 11}

0+3+2-3 0+4+0+3 2 7

We note here that the size of A is 3x4 and the size of B is 4x2 consequently the size of
AB is 3x2.

Properties of Matrix Multiplication

In defining the properties of matrix multiplication below, the matrix A, B, and C are
assumed to be of compatible dimensions for the operations in which they appear.

Property | Matrix multiplication is, in general, not commutative. That is AB # BA.
Observe that in Example 1 of this section BA is not even defined because the first matrix
in this case B does not have the same number of columns as the number of rows of the
second matrix A.

Property Il From AB = 0, it does not follow that either A = 0 or B = 0. Here 0’s are null
matrices of appropriate order.

Example 2 For the matrix A and B given by

10 00
A= and B=
10 1 1
0 0
we have AB=[ J

0 0

a null matrix even though A or B is not a null matrix.
Property Il The relation AB = AC or BA = CA does not imply that B = C. The
cancellation law does not hold in general as in a real numbers.
Example 4 For the matrices

1 23 1
A=|1 1 2 B=|1
-1 4 3 2

we have, by direct multiplication,
9 10 7
AB=|6 7 6 |=AC, althoughB=C.
9 8 -1
Property IV Matrix multiplication is associative. That is
A(BC)=(AB)C.
Property V The multiplication of matrices is distributive with respect to addition i.e.
A(B+C)=(AB+AC), (B+C)A =BA + CA.
Example 5 If

3
-1 C=
2

[\S R \S]
=l \S I \S]

3
2
1

— O A
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1 2 2 1 1 0
3 4 -3 2 2 1

verify that A(BC) = (AB)C and A(B+C) = AB+AC.
Solution:

o) Y02
(AB)C = :2 ﬂj(z J [16 11}

A(BC) = 6 S\ AB)C
(BC)= 16 11 =(AB)
(1 2}(3 1) {1 7J
AB+C)= -
3 4)\-1 3 5 15
(—4 sj [5 2J [1 7)
AB+AC = + =
-6 11) (11 4 5 15

Therefore
A(B +C)=AB + AC.
Notation. Since A(BC) = (AB)C, one may simply omit the parentheses and write ABC.
The same is true for a product of four or more matrices. In the case where an nxn matrix
is multiplied by itself a number of times, it is convenient to use exponential notation.
Thus, if k is a positive integer, then

A“=AA ... A

—_—

k times
(11
11
A2_1111_22
lroh 1) L2 2
\ J(1 1Y2 2) (4 4
A’ = AAA = AA -
1 12 2/ (4 4

and in general
2“—1 2n—1
An = (2[‘]—1 2n—1 j'

Example 7 Simplify the following matrix expression
A(A + 2B) + 3B(2A - B) - A’ + 7B* - 5AB
Solution: Using the properties of matrix operation we get
A(A + 2B) + 3B(2A - B) - A% + 7B* - 5AB = A? + 2AB + 6BA - 3B? — A’ + 7B* - 5AB
=-3AB + 6BA + 4B,

Thus

Example 6 If

Then
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Transpose of a Matrix

Definition 2.7 The transpose of a matrix A, denoted AT is the matrix whose columns are
the rows of the given matrix A.

Symbolically the transpose of an m x n matrix A =(a; is an n x m matrix

ij /mxn
T T
A = (aij = (aji ) e

where aiJT =a;

3 2 -1 3 6 2 5
For example,if A=|6 5 2 |then AT=2 5 1| If B=(5 3), then BTz@.
2 1 4 -1 2 4

In the next theorem we give some important properties of the transpose.
Theorem 1.8 Suppose A and B are matrices and k a scalar. Then

i) (AHT=A ii)(A+B) =AT+ BT

iii) (AB)" = B'AT iV) (kA)" =KkAT

Proof: We give here the proof of iii) here the rest is left as Exercise.
Note that

A:(aik) B :(bkj)

mxn 2 nxr

then

BTAT z(bi-l[)rxn (ag)nxm =(zbilaijj =[zajkbkij (1
rxm k=1 rxm

k=1
and the last step follows from the definition of a transpose. Also,

AB = (8 ) mn (bkj)nxr = (z aikbkjj
k=1

which on being transpose (i.e., on interchanging the subscript i and j) gives

(AB)" = (ia,-kbkij @

rxm

mxr

now iii) follows from (1) and (2).
The remaining properties can be proved similarly.
Definition 1.9 An nxn matrix A=(a;) is said to be:

i) Symmetricif a; =a; forall i and j, that is if AT=A.
ii) Skew-symmetric if &; =—a;; for all i and j, that is AT=_A,

The following are examples of symmetric matrices:

2 3 4
1 0

315
0 —4

453

Class Work 1

1 -3
1. If A=

1 2 -3 2 -4 5
B: C:
(5 0 —J (1 0 0]
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a) B+C b)B-C c)AB  d)AC e) BTAT f)
(AB)' g) Determine the following elements of D = AB + 2C, without
computing the complete matrix. i) d;, i1) das

2. Let Abe 3 x 5 matrix, B be 5 x 2 matrix, C be 3 x 4 matrix, D be 4 x 2 matrix, E be

4 x 5 matrix, give the size of a) 2(EB) + DA b) CD —2(CE)B.

1 -3 .
3. If A= compute A”.
0 4

4. Simplify A(A —4B)+2B(A +B)—-A?+ 7B + AB.

Let
1 _1
| 2 2
2 2

compute A% and A’. What will A" turn to be?
6. Show that for a square matrix A = (a;)

e

i) A + A" is a symmetric matrix
ii) A — AT is skew-symmetric matrix
iii) AAT and ATA, A? are symmetric matrices.

1.3 Elementary row operations and echelon form

We use matrices to describe systems of linear equations. There are two important matrices
associated with every system of linear equations. The coefficients of the variables form a
matrix called the matrix of coefficients of the system. The coefficients, together with the
constant terms, form a matrix called the augmented matrix of the system. For example, the
matrix of coefficients and the augmented matrix of the following system of linear equations
are as shown.

X, + X, + X, =2 I 1 1 1 1 1 |2
2X, +3X, + X, =3 2 3 1 2 3 1 |3
X, — X, —2X; =—6 1 -1 -2 1 -1 -2 -6

matrix of coefficients augmented matrix

Observe that the matrix of coefficients i1s a submatrix of the augmented matrix. The
augmented matrix completely describes the system.

Transformations called elementary transformations can be used to change a system of
linear equation into another system of linear equations that has the same solution. These
transformations are used to solve systems of linear equations by eliminating variables. In
practice it is simpler to work in terms of matrices using equivalent transformations called
elementary row operations. These transformations are as follows:

Elementary transformations Elementary row operations
1. Interchanging two equations 1. Interchanging two rows of a matrix
2. Multiplying both sides of an equation 2. Multiply the elements o row by a
by a nonzero constant nonzero constant
3. Add a multiple of one equation on to 3. Add a multiple of the elements of one
another equation. row to the corresponding elements of

another row.
Systems of equations that are related through elementary transformations, and thus have
the same solutions, are called equivalent systems. The symbol ~ is used to indicate
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equivalent system of equations. The next example compares the elementary transformation
with elementary row operations.
Example 1 Solve the following system of linear equations.
X, +X, +X; =2
2X, +3X, +X; =3
X, — X, =2X; =—6

Solution:
Equation Method
Initial system

X +X, + X, =2

2%, +3X, + X, =3
X, =X, =2X; =—6

Eliminate x; from the 2" and 3™ equations

~ X, +X, +X;= 2
Eq2 + (—2)Eql X, —X; =—1
Eg3+(-1)Eql  —2x, —3X, =—8

Eliminate x, from the 1% and 3™ equations

~ X+ +2X,=3
Eql-Eqg2 X, —X; =—1
Eq, +2Eq, 5%, =-10

Make coefficient of x3 in 3™ Eq 1
~ X+ +2X,=3

1 X, — X, =—1
——Eag3 2 3
5 q

X, =2

Eliminate x; from 1%t and 2™ equations
~ X, + =-1

Eql - Eq3 x, =1

Eq2 + Eq3 X, =2

The solutionis X, =-1,X, =1,x, =2

Prepared by tibebe-selassie T/mariamy

Matrix Method
Augmented matrix

W1 12
2 03 1 |3
1 -1 -21_¢

we refer to the first row as the pivot row
and the entry 1 circled in the first row as
the pivot

= 1 1 1 2
R,-2R, |0 1 -1|-1
R, - R, 0 -2 -3 -8

Create appropriate zeros in column 2

~
~

1o 23
R -R, 01 -1 -1
R,-2R, (0 0 —5/-10

Make the (3,3) element 1

- 1 0 213
_1R3 01 -1/-1
5 00 112

Create zeros in column 3
~ I 0 0 -1
R, - 2R, 01 01
R, +R, 0 0 112

Matrix corresponding to the system
X, + =-1

X, =1
X; =2
The solution is X, =—1,X, =1,X; =2


Customer
Inserted Text
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Class work 2
Solve the following system of linear equations.
X, —2X, +4X, =12
2X, — X, +5%X; =18
- X, +3X, =3X; =8

Reduced row echelon form and elementary row operations:

In above motivating example, the key to solve a system of linear equations is to transform
the original augmented matrix to some matrix with some properties via a few elementary
row operations. As a matter of fact, we can solve any system of linear equations by
transforming the associate augmented matrix to a matrix in some form. The form is
referred to as the reduced row echelon form.

Definition of a matrix in reduced row echelon form:

A matrix in reduced row echelon form has the following properties:

1. All rows consisting entirely of 0 are at the bottom of the matrix.

2. For each nonzero row, the first entry is 1. The first nonzero entry is called a leading 1.

3. For two successive nonzero rows, the leading 1 in the higher row appears farther to the
left than the leading 1 in the lower row.

4. If a column contains a leading 1, then all other entries in that column are 0.

Note: a matrix is in row echelon form as the matrix has the first 3 properties.

1 2 0 0 2
0 O 1 0 1
0O 0 O 1 0
O o0 O o0 O
O o0 O o0 O
and __ __
1 0 0 3 O
O 0 1 0 0
O 0 0 0 1
O 0 0 0 O
O 0 0 0 o
are the matrices in reduced row :L:chelon form. i
The matrix ) .
I 2 3 4
o 1 -2 5
0 O 2
0 0 0 0 |
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is not in reduced row echelon form but in row echelon form since the matrix has the
first 3 properties and all the other entries above the leading 1 in the third column are not
0. The matrix

1 0 3 4]
0o 1 -2 5
o 1 2 2
0O 0 0 0

are Not in row echelon form (also not in reduced row echelon form) since the leading 1 in
the second row is not in the left of the leading 1 in the third row and all the other entries
above the leading 1 in the third column are not 0.

Definition of elementary row operation:
There are 3 elementary row operations:

1. Interchange two rows

2. Multiply a row by some nonzero constant
3. Add a multiple of a row to another row.

0O 0 1 2
A=12 3 0 -2
3 3 6 -9
® Interchange rows 1 and 3 of A
3 3 6 -9
= 2 3 0 -2
0O 0 1 2
®  Multiply the third row of A by %
0 0 1 2
= 2 3 0 -
I 1 2 - }

®  Multiply the second row of A by -2, then add to the third row of A
0 0 1 2

= 2 3 0 -2
-1 -3 6 -5

Important result:
® Every nonzero Mx N matrix can be transformed to a unique matrix in reduced row
echelon form via elementary row operations.
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®  [f the augmented matrix [Af b] can be transformed to the matrix in reduced row echelon
form [C : d] via elementary row operations, then the solutions for the linear system
corresponding to [C : d] is exactly the same as the one corresponding to [Af b].

C lass work 2
Reduce the following matrices to row echelon and reduced row echelon forms.

2 2 4 4

2 0 -1 01 2 3
2 3 45

1L./151 0 2. 3./0 1 3 2
3 45 6

01 3 0 393
4 5 6 7

1.4 Inverse of a matrix and its properties

We motivate the idea of the inverse of a matrix by looking at the multiplicative inverse of a
real number. If number b is the inverse of a, then

ab=1 and ba=1

for example, % is the inverse of 2 and we have
23)=(R=1.
These are the ideas we extend to matrices.
Definition 2.13 An nxn matrix A is said to be nonsingular or invertible if there exists a
matrix B such that AB=BA=I,. The matrix B is said to be the multiplicative inverse of A.
Note: If B and C are both multiplicative inverses of A, then
B =BIl,=B(AC)=(BA)C=1,C=C.
Thus an invertible matrix has a unique inverse.
Example 1 Show that the matrix B is the inverse of matrix A if

2 0 -1 3 -1 1
A=|5 1 0 B=|-15 6 -5
01 3 5 =2 2

Solution: Observe that
2 0 -1y 3 -1 1 1 0

AB=|5 1 0|-15 6 -5
o1 305 -2 2

I
oS O
S =
—

I

—

and
3 -1 1Y2 0 -1} (1 0 O

BA=|-15 6 -5|5 1 0 01 0=I,
5 =2 20 1 3 0 0 1

Thus AB = BA =13 which shows matrix B is the inverse of A.
Caution. ) Inverse of a matrix is only defined for square matrices.
IT) A matrix may not be invertible even if it is square matrix.

Prepared by Tibebe-selassie T/mariam 11



0 1
For example, Let A:(O Oj then if a is invertible then there exists a matrix say

5 ) ool 36 0o )
B= such that = = .
y v 0 O y V¥ 0 0 0 1
Implying 0=1, which is absurd. Thus A is not invertible.
Definition 1.14 An nxn matrix is said to be singular if it does not have a multiplicative
inverse.
Notation: Let A be an invertible matrix. We denote its inverse by A™.
Gauss-Jordan Elimination for finding the inverse of a matrix
Let A be an nxn matrix.
1. Adjoin the identity nxn matrix I, to A to form the augmented matrix (A: 1,)
2. Compute the reduced echelon form of (A: I,,). If the reduced echelon form is of the
type (I,: B), then B is the inverse of A. If the reduced echelon form is not of the type
(I.: B), in that the first nxn submatrix is not I,, then A has no inverse.
Example 2 Determine the inverse of the matrix

1 -1 =2
A=l2 -3 -5
-1 3 5
Solution: Applying the method of Gauss-Jordan Elimination, we get
I -1 -2 1 0 0 ~ I -1 -2 1

00
(A:ly)=|2 -3 =5 0 1 0| R,—-2R, |0 -1 -1 =2 1 0
-1 3 5 00 1) R+R, (0 2 3 1 01

~ 1 -1 -2 1 0 0

-R, 0 1 1 2 -1 OJ

0O 2 3 1 0 1

~ 1 0 -1 3 -120

R+R, |0 1 1 2 -1 0}

R, -2R, 00 1 -3 2 1

~ 100 0 1 1

R+R, [0 1 0 5 -3 1}

R,-R, 0 0 1 -3 2 1

Thus

0 1 1
A'l=l5 -3 -1
-3 2 1

The following example illustrates the application of the method for a matrix that does not
have an inverse. Letter on in this chapter we devise more effective method to decide whether
a matrix invertible.

Example 3 Determine the inverse of the matrix below, if it exists.

Prepared by Tibebe-selassie T/mariam 12



1 1 5
1

A= 2 7
2 -1 4
Solution: Applying the method of Gauss-Jordan Elimination we get
1 1 5100 ~ 1 5 1 00
(A:ly))=|1 2 7 0 1 0| R,-R, 1 2 -1 10
2 -1 4 0 0 1 0 1

~
~

03 2 -10
R, -R, 12 -1 1 0
R,+3R, (0 0 0 -5 3 1

There is no need to proceed further. The reduced echelon from cannot have a one in the
(3,3) location. That is the reduced echelon form cannot be of the form (I,: B). Thus A™
does not exist.

1
0

R,—2R (0 -3 -6 -2
1
0

Class work 4 Find the inverse of the matrix below if it exists.

O 2 1 3 1 2 -3
a)(2 J b)) |0 2 1 o1 -2 1
11 2 5 -2 -3

Properties of Inverse Matrices
Let A and B be invertible matrices and ¢ a nonzero scalar. Then

. (A=A

2. (cA) =1A"

3. (AB)'=B"'A"
4. (AN =(A™Y"
5 (At)—l — (Afl)t

we verify the 1* and 3™ results to illustrate the techniques involved leaving for the reader the
remaining results to verify.

(A™")" = A this result follows directly from the definition of inverse of a matrix. Since A™ is
the inverse of A, we have

AAT =ATA=1,
This statement also tells us that A is the inverse of A™'. Thus (A= A.
(AB)" =B™'A™" we want to show that the matrix B~'A™" is the inverse of the matrix AB.
We get, using the properties of matrices,
AB(B'A™)=ABB")A"
=Al A
=AA" =1,
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Similarly, it can be shown that (B'A™")(AB) = I,. Thus B"'A™" is the inverse of the
matrix AB.

4 1 1 -1
Example: If A=[3 J, then it can be shown that A_l=( 3 4J.Use this

information to compute (A").
Solution: Result 5 above tells us that if we know the inverse of a matrix we also know
that inverse of its transpose. We get

A“I—A‘”—l —11_1 -3
(A)" =( )—_3 Al Tl 4l

51 2 -1
If A= (9 2} then A™ :( 9 s J Use this information to determine

Class work

a) (2AYHY, b) A~ c) (AAYH™.

1.5 Determinants and its properties

To every square matrix A =[a; ], is associated a number or an expression called

the determinant of A and is denoted by |A| or det (A).

Determinant of order one
Let A =[a,,] be a square matrix of order one. Then det (A) = a;;. By definition, if A is
invertible, then a,, # 0 and so det A#0. Also, conversely if det A#0, then a;, # 0 and so, A

is invertible.
Determinant of order two
The determinant of a 2x2 matrix is given by

a a
a: az =88, —a,a,.
Example 1 Calculate the determinant of the following matrices.
a) b)
1 2 -1 2
o2 -1 7
Solution:
(@
1 2
det =82-1-2-0=3
(b)
-1 2
det =[-17 —-(-112= -5
(- ) =cin-com
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Definition 1.15 Let A =[a; and M; be the (n-1)x(n-1) matrix obtained from A by

ij Inxn

deleting the row i and j column containing @; . The det(M) is called the minor of a; .
We define the cofactor C; of a; by C; =(=1)""! det(M,).

Example 2 Determine the minors and cofactors of the elements a,, and a,, of the
following matrix A.

A=

DN W N

5
1
4

N O B

Solution: Applying the above definitions we get the following.

Minor of a,,: 25 4 { 2
det(M,)=3 1 2:&‘ J=(1-6)—(4~2)=—2
11)

Cofactor of a,,: C,, =6-1)4" dgt( 2.
2 5 4 s 4

Minor of a,,: det(M;,)=3 '1 2|= ‘3 2‘ =(22)-(34)=-8
546

Cofactor of a,,: C,, = (—=1)*"* det(M,,) =38.

Definition 1.16 The determinant of a square matrix is the sum of the product of the
elements of the first row and their cofactors.

IfAis3x3, |A|=a,C,, +a,C, +a,C;
IfAis 4x4, |A|=a,C,, +a,C, +a,C; +a,C,
If Aisnxn, |A|=a,C,, +a,C, +a,,Cj; +...+a,,C,,

These equations are called cofactor expansions of |A|.
Example 3 Evaluate the determinant of the following matrix A.

2 5 4
A={3 1 2
5 4 6
Solution: Using the elements of the first row and their corresponding cofactors, we get
|A| = a11C11 + a12C12 + a13C13
1 31
4 5 4‘
=2(6-8)-5(18—-10)+4(12-5)=—-16
We have defined the determinant of a matrix in terms of its first row. It can be shown that the

determinant can be computed using a different row or one of the columns. For example the
cofactor expansion along the second column yields

2 2 3
=27, J+56D

3 2 4(-1)*
+ f—
56
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320 24 2 4
|Al=-5 +1 —4
56 |56 32
=-5(18-10) +1(12 - 20) - 4(4—12)
=-16

As we have seen it is not necessary to limit ourselves to using the first row for the cofactor
expansion. We state the following theorem without proof.
Theorem 1.17 If A is an n x n matrix with n > 2, then det(A) can be expressed as a cofactor
expansion using any row or column of A.

det(A)=4,C,, +a,,C, +...+a,,C,,

=3a,,C; +a,,C,; +...+3,C,

fori=1,...n and j=1,...n.
The cofactor expansion of a 4 x 4 determinant will involve four 3 x 3 determinants. One can
often save work by expanding along the row or column that contains the most zeros.

Note: There is a useful rule that can be used to give the sign part, (-1)™, of the cofactors in
these expansion. The rule is summarized in the following array.

If, for example, one expands in terms of the second row, the signs will be — + — etc. The signs
alternate as one goes along any row or column.
Example 4 To evaluate the determinant of

0 230
0 4 50
01 0 3
2 01 3
one would expand down the first column. The first three terms will drop out, leaving
2 30
2 3
-24 5 0:—2-3-‘ ‘212.
4 5
1 0 3
Example 5 Calculate
2 =1 4 @
det a =2 T 17
g 0 o0 a0
-4 3 -8 12
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Solution Choose row 3, since it has the most zeros

2 -1 4 8
#2T =0-det{ } 40 -det{ }+0-det{ 14 0-dst{ )
0 0 o ’ : -
-4 3 -6 12

This example illustrates the fact that if a matrix has a row (or column) containing all zeros,
the determinant is zero.
Example 6 Calculate

2 168 17 4
det 0 -3 22 -3
@ 0 & o0
g 0 a4 1

Solution Choose column 1 since it has the most zeros.

2 16 17 4 2 7 _3 .
de] @ 2 2 3 | -20%| 0 8 o =+2{—3}d$(ﬂ 1)
O 0 § @ 0o o 1
0 0 0 1 ~ ” y
Uge clwenm 1

= +2(—2)(8) = -38

Another look at Example 6 shows us that the determinant of the given matrix was the
product of the diagonal elements. Although this does not happen for all matrices, it
does if the matrix is upper or lower triangular.

Theorem 2.18 If A, is upper (or lower) triangular, then. det(A) = a,,a,,...a,,

Proof. Let us use the principle of mathematical induction. The proposition P(n) is as
follows: An n x n upper triangular matrix Ahas determinant. a,,a,,...a,,, First, we check

P(2). When = =12,
Ji = [LAF] iz
1] ar

and by definitiondet(A) = a,,a,,. The proposition is true for # =2. For the induction

hypothesis we suppose that P(k) is true. That is, suppose that if Ay, is upper triangular,
then det(A,, ) =a,,a,,...8,.

To complete the proof, we must show thatdet(A,, . ..,;) = 8,8, ..y, ;- - Writing A, ., ,
we have
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fﬂu 32 sen o 1 T k41 \
0 axp @op €2 541
a o T 05 A1

\ 0 a .- a0 L LTNTRITY.
We computedet(A,,..,) by using row k +1 to find
dib Apprensr = (=1} : ki gpa kpn dot Ao

By induction == apg 1 ky1{on - - - ogn}
hypothesis—.

= @31 "ARHTLLLEFE

Thus by the principle of mathematical induction, the proposition is true for all n. []
Proof. [(Alternative) Proof] Let

a1
0 ez
: ¥y
k u [ RN u [N} ﬂﬂl
Use the first column to calculate:
@z
0 L
det=A = 3y det ._21'
Vs .
0 o *" an

Use the first column again:

det A = ayap;det
(]

Dnn
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Continuing to always use the first column gives

det A -nllﬂﬂ'"ﬂ-n—lﬂ—IM( ;’l—l.q—] :::1..'! }

=ﬂ',ﬂ'==---,ﬂ"“

Both proofs are almost the same for lower triangular matrices. This is left to the
problems. []

So, if A is upper or lower triangular, the determinant is easy to calculate. To use this
fact, we can row-reduce a matrix to upper or lower triangular form, calculate the
determinant of the resulting matrix, and then relate that determinant to the determinant
of the original matrix.

Class work
1. Let
2 0 1 =5
|18 -1 2 1
14 -3 -5 0
1 4 8 2
Find the following minors and cofactors of A.
(a) Mj; and Cy, (b) My3 and Cy3
2. Find the determinants of the following matrix using as little computation as possible.
1 -2 3 0
4 0 50
7 -3 8 4
-3 0 40

Properties of a Determinant

The following theorem tells us how elementary row operation affect determinants. It also

tells us that these operations can be extended to columns.

Theorem 1.19 Let A be an n x n matrix and € be a nonzero scalar.

a) Ifa matrix B is obtained from A by multiplying the elements of a row (column) by ¢ then
|B| = C|A.

b) Ifa matrix B is obtained from A by interchanging two rows (column) then |B|=—|A|

c) If a matrix B is obtained from A by adding a multiple of one row (column) to another
row(column), then |B| = |A|.

The proofis left as exercise.

Example 7 Evaluate the determinant

3 4 =2
-1 -6 3
2 9 -3
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Solution: We examine the rows and columns of the determinant to see if we can create zeros
in a row column the above operations. Note that we can create zeros in the second column by
adding twice the third column to it:

3 4 =2 B 3 0 -2
-1 -6 3|, __ -1 0 3
C,+2C,
2 9 -3 2 3 -3
Expand this determinant in terms of the second column to take advantage of the zeros.
3 =2
=(-3) L3 =(-3)(9-2)=-21.

We shall find that matrices that have zero determinant play a significant role in theory of
matrices.
Definition 1.20 A square matrix A is said to be singular if |A| = 0. A is nonsingular if |A| #
0.
The following theorem gives information about some of the circumstance under which we
can expect a matrix to be singular.
Theorem 1.21 Let A be a square matrix. A is singular if

a) all the elements of a row (column) are zero

b) two rows (columns) are equal.

c) Two rows(columns) are proportional.
Example 8 Show that the following matrices are singular.

1.
2 0 -7 2 -1 3
ayA=| 3 0 1 byB=|1 2 4
-4 0 9 2 4 8
Solution:

a) All the elements in column 2 of A are zero. Thus |A| = 0.
b) Observe that every element in row 3 of B is twice the corresponding element in row
2. We write
(row 3) = 2(row 2)

Row 2 and row 3 are proportional. Thus |B| = 0.
The following theorem tells us how determinants interact with various matrix operations. The
examples following it demonstrate the theorem in use.
Theorem 1.22 Let A and B be n x n matrices and € be a nonzero scalar.

a) Determinant of a scalar multiple : [CA|=C"|A|

b) Determinant of a product: |AB| = |A||B|

c) Determinant of a transpose: |A| = |A|

d) Determinant of an inverse: ‘A_l‘ = ﬁ (assuming A" exists).
Example 9 If A is a 2x2 matrix with |A| = 4, use Theorem 2.22 to compute the following
determinants.
a) |3A] b) |AY| c) |SA'AY|, assuming A exists.
Solution:

a) BA|=(3Y)A=(9).4=36

Prepared by Tibebe-selassie T/mariam 20



b) |A’|=|AA| = |AlA] =(4).(4) =16
c) [SA'AT = (5HAAT =25AA!| = 25|A|ﬁ =25.
Example 10 Prove that |[A™A'A| =|A|

Solution: by the properties of matrices, determinants, and real numbers we get

A A <A = A= A

Class Work

x-1 =2
1. Find all the values of x that make the following determinant zero. ( 5 1]
X— X—=

I -1 -3
2. If A= 2 0 —4/| then |A| =-2. Use this information, together with the properties
-1 1 2
of determinants, to compute the determinant of the following matrices.  a)
I -1 -3 2 0 -4 1 -1 -3
2 0 -4 by 1 -1 -3 )| 4 -2 -10
-2 2 4 -1 1 2 -1 1 2
3. If A and B are 3 x 3 matrices and |A|=— 3, |B| = 2, compute the following determinants.
a) |AB|
b) |AAY] ¢) [(A'B™)

1.6 Determinant Method of Finding Inverse Matrices

We first introduce tools necessary for developing a formula for the inverse of a
nonsingular matrix.

Definition 2.23 Let A be an n x n matrix and C;; be the cofactor of @;; . The matrix

whose (i, j)th element is Cij is called the matrix of cofactors. The transpose of this
matrix is called the adjoint of A and is denoted adj(A).

C, C, - Cy C, C, - C, C, Cy Cu
C, Cp -+ Cy C, Cp -+ Cy _ C, Cp -+ Cp
Cnl an Cnn Cnl an Cnn Cln C2n Cnn
matrix of cofactor adjoint matrix
Example 11 Find the matrix of cofactors and the adjoint matrix of the matrix
-2 -1 3
A=|-4 5 2
-3 1 4
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Solution: The cofactors of A are

5 2 ‘—4 2‘ ‘—4 5
C, = =18 C,=- =10 C, = =11
1 4 -3 4 -3 1
c __‘—1 3‘= =‘—2 3‘=1 c =_‘—2 —1‘=5
ol 4 2o1-3 4 Pol3
-1 3 -2 3 -2 -1
Thus the matrix of cofactors of A is
18 10 11
7 1 5
-17 -8 -14
and the adjoint of A is the transpose of this matrix
18 7 -17
adj(A)=|10 1 -8
11 5 14

The next lemma is important for the proof of the theorem on inverse of a nonsingular matrix.
Lemma 1.24 Let A be an n x n matrix. If Cjc denotes the cofactor of a; for k=1,...,n then

Al ifi=]

a“le +a“Cjl +...+ai1Cj1 = { 0 it i | (1)

Proof: Ifi=j, (1) is just the cofactor expansion of det(A) along the ith row of A. If i # j, then
it is the expansion of the determinant of a matrix in which the jth row of A has been replaced
by the ith row of A, thus this is matrix having two identical rows consequently its

determinant is zero as in (1).
Theorem 2.25 Let A be a square matrix with |A| # 0.A is invertible with
1.
A7 =—adj(A).
A I(A)
Solution: From Lemma 2.24 we observe that the product Aadj(A) is thus a diagonal matrix
with the diagonal elements to get |A|l,. Thus

A adj(A) =|Al,

If A is nonsingular, det(A) is a nonzero scalar and we may write
I .
Al —adj(A) [=1
()
Thus
1.
A =—adj(A).
A I(A)
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a
Example 12 For a 2 x 2 matrix ( IZJ
a‘21 a‘22

adj A=( a,, _alzj
—ay, a

If A is nonsingular, then

A—l _ 1 ( a,, _alzj
4,8, —a,,8,, —ay a,

Example 13 Use the result of Theorem 2.25 to compute the inverse of the matrix

-2 -1 3
A=|-4 5 2
3 1 4

Solution: |A| is computed and found to be —13. This matrix was discussed in Example 11.
There we found that

18 7 -17
adj(A)=|10 1 -8
11 5 —-14
The formula for the inverse of a matrix gives
| -5 "5 O
Al=—CadiA)=| -1 -k &)
1 _ 5 14
13 13 13

Class work
Determine whether the following matrices have inverse. If a matrix has an inverse, find the
inverse using the formula for the inverse of a matrix.

o 1 2 3
a)(32j b0 1 2
45 3

We now discuss the relationship between the existence and uniqueness of the solution to a
system of n linear equations in n variables and the determinant of the matrix of coefficient of
the system.

1.7 System of linear equations and characterization of solutions

Theorem 2.26 (Cramer’s Rule). Let A be an n x n nonsingular matrix and let B € R". Let

A be the matrix obtained by replacing the ith column of A by B. If X is the unique solution
to AX =B, then

X =— fori=12,..,n
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Proof: Since

“AB= (adjA)B

A
« = b,C, +b,C, +...+Db,C,;
| A
_IA
A
The next theorem characterizes the solution of a system of equations using the determinant
of the coefficient matrix and the matrix A; defined in Cramer’s rule above.

it follows that

Theorem 1.26 Let AX = B be a system of n linear equations in n variables.

i) If |A] # 0, then AX = B a unique solution. The system has a trivial solution that
is X=0if B = 0.
1) It |A| =0, and at least one of the A;s is nonzero the system has no solution. For, if

|A| =0 and |A| # 0, then X|A| =|A| leads to a contradiction. Such systems are
called inconsistent
iii) If |A| =0 and |Ai| =0, i =1,2,...,n the system my have an infinite number of

solutions or may not have a solution. A system having an infinite number of
solutions is called dependent.
Definition 1.27 If AX = 0 then the system of equations is said to be homogeneous.
Example 1 Solve

By —xtdwy= 4
1 +Eatxg= 6

X —¥a— &g = —4

by using Cramer’s rule.
Solution First we calculate det A :

g -1 1 g -1 1 -
detAmdet] 1 1 1| = de] 1 1 1 -Mn('ll)--d
1 -1 =1 i“ 2 DD
R

Now substitute
d
Em e
—4
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—d
&1 = = —E—l

Similarly,
3 4 1 ie 1
det| 1 1 det] 1 2 1
1 -4 -1 _ 1 60 -1 _ -8 _ g
2= —4 _1 i A
-1 4 3 -1 4
det| 1 1 8 det] 4 0 10
B 1 -1 4/ 2 02) -n_,
= - 1 — -1

l
Rtk

The answer checks, by direct substitution.
The following two systems of linear equations, each of which has a singular matrix of
coefficients, illustrate that there may be many or no solutions.

X, —2X, +3%;, =1 X, +2X, +3X; =3

3X, —4X, +5%X;, =3 2%, + X, +3X;, =3

2X, —3X, +4x;, =2 X, +X, +2X;, =0
many solution no solution

X, =t+1LXx, =2t,x, =t

Example 2 Determine values of r for which the following system of equations has
nontrivial solutions. Find the solutions for each value of r.
(r+2)x, +(r+4)x, =0
2X, +(r+1)x, =0
Solution: This system is a homogeneous system of linear equations. It thus has the trivial
solution by Theorem 2.26 (i). The same theorem part (iii) tells us that there is the

possibility of other solution only if the determinant of the matrix of coefficients is zero.
Equating this determinant to zero, we get
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r+2 r+4

2 r+1
(r+2)(r+1)-2(r+1=0
r’+r-6=0

(r=2)(r+3)=0
Thus the determinant is zero if r =-3 or r = 2.
r = -3 results in the system
X, +X,=0
2%, —2X, =0
this system has infinitely many solutions, X, =t,X, =t.
r = 2 results in the system
4x, +6x, =0
2X, +3X%, =0
This system has many solutions, x, =-3t/2,x, =t.

Cramer’s rule gives us a convenient method for writing down the solution to an n x n
system of equations in terms of determinants. In this method we can solve for any one of the
X;S with out solving the solution of the entire system. However to compute the solution of
the system as a whole, one must evaluate n + 1 determinants of order n. Evaluating even two

of these determinants generally involves more computation than solving the system using
Gaussian Elimination that we are going to see bellow.

The Gaussian Elimination Method
Let AX = B be a linear system of equations then
1. Write down the augmented matrix of the system of linear equations.
2. Find an echelon form of the augmented matrix using elementary row operations.
3. Write down the system of equations corresponding to the echelon form.
4. Use back substitution to arrive at the solution.
Example 3 Solve the following system of linear equations using the method of Gaussian
elimination.
X, +2X, +3X; +2x, =-1
=X, = 2X, =2X; + X, =2
2X, +4X, +8X, +12x, =4
Solution: Solving the augmented matrix, create zeros below the pivot in the first column.
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1 2 3 2 -1 - (1232 -1
1 =2 -2 1 2R+R o 0 1 3 1
2 4 8 12 4 )R;—2R, 0 2 8 6
1 2 3 2 -1

T oo 13 1

R, — 2R,

000 2 4

L (1232 -1

1R300131

2 0001 2

We have arrived at the echelon form
The corresponding system of equation is
X, +2X, +3X%; +2X, =-1

Xy +3X, =1
X, =2
The system is now solved by back substitution i.e the value of X, is substituted into the
second equation to give X,. X; and X, are then substituted into the first equation to get X;.
We get
X; +3(2)=1
X; =-5
Substituting x, =2 and X, =-5 into the first equation we have
X, +2X, +3(=5)+2(2) = -1
X, +2%, =10
X, =—=2X, +10

Let X, =thence the system has infinitely many solutions.

Example 4 Determine the value of k so that the following system of unknown X, y, z has

(1) a unique solution, (ii) no solution, (iii) an infinite number of solutions.

X+y—-z=1
2Xx+3y+kz=3
X+Kky+3y=2
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Solution: The augmented matrix determined by the system is
I 1 -1 1 ~ I 1 -1 1
2 3 -k 3| R=2R o 1 k+2 1
1 k 3 2) R=R {0 k-1 4 1

11 1 |
R3—(:—1)R2 0 1 k+2 1
0 0 —(k—-Dk+2)+4 2-k

11 1 |

~ |01 k+2 1

0 0 (2-k)k+3) 2-k

The system has a unique solution if the solution if the coefficient of z in the third equation
is not zero; that is, if k # 2 and k # -3. In case k = 2, the third equation reduces to 0 = 0 and
the system has infinite equation reduces to 0 = 5 and the system has no solution.
Summarizing (i) k # 2 and k # 3, (ii) k = -3, (iii) k =2.

Class Work

Solve the following systems of equations using
a) Cramer’s rule (if possible)
b) Gaussian elimination method.

2X, +TX, +3X, =7 X, +6X, —X; =3
1) X +2X,+X, =2 i) X, —2X, +3X; =2
X, +5X, +2X; =5 4%, —2X, +5%X; =5

MATH 231 WORKSHEET II

1 0 0 - 1 0
1. Giventhat|0 1 0 [A (1 2): 0 1] find A
0 0 —3 0 0
2. ForneN,let A, = [(1) Tj then show that
M) AAL=A, (i) A, =A,

cosf sind N coshd sinnd
3. Let f(0)= _ . Then show that f"(0) = , for ne N
—sind cosé —sinn@ cosné
4. Find the inverse of the following matrices if possible.
-1 3 7 5
1 2 3 0 1
@[ 2 ol-31 2] @2 @ |2 1 2
a - c
8 5 2 0 1 4
9 4 5 2 1
1 -1 -1 3
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11 0
5. Find the values of x for which the matrix A=|1 0 -1 is invertible. In that case
1 2 X
give A

6. Find the determinants of the matrices in 4 above.
7. What is the determinant of the product matrix below?
1 =2 0)(2 0 I)(1 2 3
2 1 0|0 1 Ooff1 £ O
0 0 1){1 0 1){0 O 1
1 -2 0 1 20
8. Giventhat |2 1 O|A|-2 1 0]|=5l, whatis det(A)?
0 0 1 0 0 1
9. Find the determinant and inverse of the following matrix
1 0 0O
1 1 X+4 X X
01 0 0
(a)o010 b)y|a b c )] x x4 x
a> b ¢’ X X X
a b cd

10. For what values of k will the system
X, +X, +kx; =0
X, +kx, + X, =0
kx, + X, + X, =0
have a non-trivial solution? In each case what are these solutions?
11. Solve each of the following system of linear equations by using:

1) Gaussian elimination method
ii) Cramer’s rule, when ever possible

2X+y+62=6
2x-5y =1 3X, +2X, =Xy =—1
b c) 3IX+2y-2z=-2
3Xx-2y=-4 — X, +2X, =9%, =9
X+y+2z=4
X+y+z-2w=-4
3Xx+4y+72=0 =X +X, =X =-1
2y+z+3w=4
d) y—-2z=3 e) —2X, —2X, + X%, =3 d)
2X+Yy—-2+2wW=5
X+3y—-z2=-5 2%, + X, =3X%;, =1
X—y+w=4

12. A man refused to tell anyone his age, but he likes to drop hints about it. He then
remarks that twice his mother’s age add up to 140 and also that his age plus his
father’s age add up to 105 Furthermore, he says that the sum of his age and his
mother’s age is 30 more than his father’s age. Calculate the man’s age or show that
his hints contradict one another.
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13.

14.

15.

16.

Find the eigenvalues and eigenvectors of the matrix:

5 -1 0
1 2
A= B={0 -5 9
-1 1
5 -1 0
If D is a diagonal matrix
d 0 - 0
o 0 d-2 0
0O 0 - d

a) What is the characteristic polynomial of D?
b) What are its eigenvalues?
Show that if 6eR and 0 is not an integral multiple of wt, then the matrix

[cos 6 —sin@

. does not have a nonzero eigenvector in R
sind cos@

The eigenvalues of A are the reciprocals of the eigenvalues of a nonsingular matrix
A. Furthermore, the eigenvectors for A and A™ are the same. Verify these facts for
the matrices given below

1 2 -1
51
1 0 1
15
4 -4 5
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2 Vectors and Vector Spaces

2.1 Scalars and Vectors; Located Vectors in R2 and R3

A scalar is simply a real number, a complex number or a quantity that has magnitude but
no direction. For instance length, temperature, and blood pressure are represented by real
numbers hence are scalar quantities. A vector, on the other hand, is usually described as a
quantity that has both magnitude and direction. Geometrically, a vector is represented by
a directed line segment that is an arrow and is written either as a boldface symbol Vv or

V or AB for instance weight, velocity, frictional force are vector quantity.
Notations and Terminologies
A vector whose initial point is A and whose terminal point is B is given by AB and the

e

AB

. Moreover two vectors that have

magnitude (or length) of vector AB is denoted by

the same magnitude and the same directions are said to be equal. Thus in fig 1 below
AB = CD.

Fig 1
Because of this property of vectors that we can move vectors from one position to
another provided its magnitude and direction are maintained, so we say that vectors are

free by their very nature. The negative of a vector AB , written _AB , 1s a vector that has
the same magnitude as AB but opposite in direction. If k # 0, then k AB is a vector that
is |k| as long as AB . When k=0 we say 0 AB=0 (zero vector). Two vectors are said to be

parallel if and only if they are nonzero scalar multiples of each other.

Fig2
Addition and Subtraction
Two vectors can be considered as having a common initial, such as in fig 3a. Thus, if

nonparallel vectors AB and AC are the sides of a parallelogram as in fig 3b, we say the
vector that is the main diagonal, or AD , 1s the sum of AB and AC and we write
AD = AB + AC.
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(a) (b)

Fig. 3

The difference of two vectors AB and AC is defined by

AB - AC = AB +(—AC).
As seen in fit 4(a), the difference AB - AC can be interpreted as the main diagonal of a
parallelogram with sides AB and -AC. However, as shown, in fig 4b, we can also
interpret it as the third side of a triangle with sides AB and AC. In this second

interpretation, observe that the vector difference CB=AB-AC points toward the
terminal point of the vector from which we are subtracting the second vector. If

AB=AC , then AB - AC = O(zeBro vector).

AB—AC
T — " =C A r(“
(a) (b)
Fig. 4

Vectors in R?
To describe a vector analytically, let us consider vectors in two-dimensional coordinate
plane. The vector with initial point the origin O and terminal point P(x;,y;) in fig 5, is

called a position vector of the point P and is denoted by OP = <X1, y1>
P(x1,y2)

Fig. 5

© ]

In general, a vector a in R? is any ordered pair of real numbers the kind
a=(a,,a,).
The numbers a, and a, are said to be components of the vector a.
As we shall see in the first example, the vector a is not necessarily a position vector.
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Example 1
The displacement between the point (x,y) and (x+4,y+3) in fig 5a is written <4,3>. As
seen in fig. 6b, the position vector of <4,3> is the vector emanating from the origin and
terminating at the point P(4,3).

(x+4,y+3)

a (4. 3)
(x)y)

(a) (b)

Fig. 6
In R® addition, subtraction, multiplication of vectors by scalars, and so on, are defined in
terms of their components.

Definition 2.1 Let a=<a,,a, > and b =<b,,b, >be vectors in R* then
i) Addition: a+b=<a, +b,a, +b, >
ii) Subtraction: a—b =<a, —b,,a, —b, >
iii)  Equality: a=b ifand only if a, =b,,a, =b,
iv) Scalar multiplication: ka =< ka,,ka, >
Example 2 If a=<1,4> and b =<-6,3 >, find a+b,a—b, and 2a+3b.
Solution: By definition 1.1
a+b=<1+(-6)4+3>=<-57>
a-b=<1-(-6),4-3>=<71>
2a+3b=<28>+<-18,9 >=<-16,17 >
Definition 2.2 The magnitude, length, or norm of a vector a=(a,,a,) is denoted by

, and defined by
laf=+va’ +a,”.
Example 3 If a =< 6,2 >, then [a = /67 +(-2)* = /40 = 24/10.

a|| > (0 for any vector @, and ||a|| =0 if and only if a=0.Especially we define a

Ja

Clearly,

unit vector as a vector with norm unity. We can obtain a unit vector U in the direction of

L. ie.u= La is a unit vector in the direction of a.(why?).
el el

Example 4 Given a =< 6,2 >, form a unit vector in the direction of a and in the opposite
direction of a.

Solution:- We sow in example 3 that the norm of a is 2410 . Thus the unit vector U in
the direction of a is given by

a by multiplying a by

_ ! a= 1 <6—2>—<i_—1>
2410 2410 V10410

and the vector in the opposite direction of a is given by

u
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w2
10410
There are two especial unite vectors in R* that simplify describing and operating on
vectors which are
I=<10>and j=<0,1>
any vector a =<a,,a, > can be written as a sum:
a=<a,,a, >=<a,,0>+<0,a, >=a, <,0>+a, <0,1>=a,i+a,j.
Example 5 Vector operations using i and j.
a) <4,7>=4i+7j b) (2i —5j) + (8i + 13)) = 10i + §j
o [i+j]=+2
d) a = 6i + 4j and b = 9i + 6] are parallel vectors since b=3/2a
Vectors in R®
A vector a in R® is an ordered triple of real numbers a =< a,,a,,a, > where a,,a,,a,are

the components of the vector. The set of all vectors in R® will be denoted by the symbol
R’. The position vector of a point P(xi, yi, z|) in space is the vector OP = < xy, yy, z;>

whose initial point is the origin O and whose terminal point is P.
A
7.

P(X1,y1,22)

Fig 7

The component definition of addition, subtraction, scalar multiplication and so on are
natural generalizations of those given for vectors in R%.
Definition 2.3 Let a=<a,,a,,a, > and b =<b,,b,,b, > be vectors in R®. Then

i) Addition: a+b=<a, +b,a, +b,,a, +b; >

i) Subtraction: a—b=<a, -b,,a, -b,,a, -b; >

iii) Scalar multiplication: ka =<ka,,ka,,ka, >

iv) Equality: a=b ifand only if &, =b,,a, =b,,a, =b;.
v) Zero vector: 0=<0,0,0 >

vi) Magnitude: ||a|| = \/af + a22 + 6132
Example 6 Find the vector ?P; if the points P; and P, are given by P,(4,6,-2) and
P»(1,8,3).

Solution: Observe that we may sketch the vectors as in the figure below
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A
P»(1,8,3)
@) >

FR

1(4567_2)
Since PP, = OP, ~OP, b Fig.8 we have
PP, =<1-4,8-6,3-(-2)>= <-3,2,5>.
Solution: By definition 1.3vi
—2Y (3) (6) [4+9+36
ldl=,| = 1| +|=| +| 2| ={— =1
7 7 7 49

Thus a is a unit vector.
As we have special unit vectors in R* (i and j) we also have special unit vectors in R’
defined as
i =<1,0,0> j=<0,1,0> k=<0,0,1>

Example 8 Find the norm of a where a = <_72,%,

S| o

so that any vector a =< a,,a,,a, >may be written as
a=<a,,a,,a, >=a, <1,0,0>+a, <0,1,0>+a, <0,0,1 >
=a,i+a,j+ak.
For instance < 7,-5,13 >=7i—5j+13k.

2.2 Dot (Scalar) Product

In this and the following section, we shall consider two kinds of products between
vectors that originat in the study of mechanics, electricity and magnetism. The first of
these products, known as the dot or inner or scalar product, yields a scalar.
Definition 2.4 Let a=<a,,a,,a, >and b =<b,,b,,b, >be two vectors. The dot product
of a and b is the number a.b defined by

a-b=ab, +a,b, +a,b,.
Observe that if a =<a,,a,,a, >the norm of a is given by

la|=/a’ +a,* +a,” =+a-a or

a-a=d"

In particular
i} = = <] = 1.
Example 1 Find the scalar product of a =<1,-2,4 >and b =<3,0,2 >

Solution: From definition 1.10 we see that
a-b=(1x3)+(2x0)+(4x2)=11.
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The scalar product satisfies many of the laws that hold for real numbers. For example
a-b=Db-a (ca)-b=c(a-b)=a-(cb)
a-(b+c)=a-b+a-c (@+b)-c=a-c+b-c
The following theorem gives us the relation between the dot product of two vectors and
the angle between them.

Theorem 2.5 If a and b are two nonzero vectors in either R* or R® and 6 is the angle
between them, then

a-b = [a[||b| cos &, where 0 <6 < 7.

Proof: We will prove the result for R*> while a=a,i+a,j and b=b,i+b,j. The proof

for vectors in R’ is similar.
The vectors a,b, and b —a may be used to form a triangle as in fig below, then

by the low of cosines we have

I Io—al" = e +[jo]" - 2Jaflfcose
where 0 is the angle between a and b. consequently
1
b-a elloleos = 3 el +[pl ~Jo—2|']
P - :%[aqz+a22+b12+b22_(a1_b1)2_(a2_b2)2]
h >
1
Fig 9 = 5(2alb1 +2a,b,)
=a-b

We can observe from theorem 1.11 above is that if the two vectors are perpendicular to
each other i.e 6 =90° then a-b = ||a||||b||cos€ =0 and conversely. This proves corollary

1.12 below

Corollary 2.6 The nonzero vectors a and b are perpendicular to each other if and only if
a-b=0.

The other important result that we get from theorem 1.11 is that

c0s6‘:ﬂ

el

which intern implies, the angle between a and b is uniquely determined as 0 <8 < .
Example 2 a) The vector 0 is perpendicular to every vector in R?
b) The vector <3,2> and <-4,6> are perpendicular in R?

¢) The vector <2,-3,1> and <1,1,1> are orthogonal in R’
Example 3 Determine the angle between the vectors u=iand v =i + k in R’.
ul=1, |v|= V2 and if @ is the angle between u and v
1

v _
Jullvl V2

Solution: Since u-v=l1,

we have cosf =
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1
consequently @ = arccos— = 45°.
q y NG
The Orthogonal Projection of one Vector onto Another
Suppose that two nonzero vectors a and b are positioned as Fig (a) and (b) below and that
the sun casts a shadow on the line contammg a vector parallel to a which we call the

projection of b onto a and denoted by Pra>.

(b)

since Pr,” is parallel to a or is 0, it must be a scalar multiple of a. The length of Pr,° is
, where 0 is the angle between a and b (0 < 8 < ). It follows that

||b|| cos¢9 for0<O< z
ot el z

||b||( cos&) for % <O0<rx

hence irrespective of the angle 6 we have

a-b

r. =[b cosH = ( ] a —-a
e te) = fol] il = o
Now we are prepared to define the Pr°.

|a b| la-b|

Note: HPF || ||— )
|| || el el

Definition 1.13 Let a be a nonzero vector. The projection of vector b on to a (Pr.?) is
defined by

a-b
5 a

el

Example 4 Leta=i+j and b=-i+2j+4k .Find Pr.’.

Solution: Observe that a-b=—-1+2 =1 and ||a|| =2 , hence

poah 1 Lo 11
+p)==1+—].

R
Direction Cosines: For a nonzero vector a=a,i +a,j+a,K in R’, the angle a.,B, and y

between a and the unit vectors i, J, and K, respectively, are called dirction angles of a. See Fig
below, then

Pr,” =

Pr,” =
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z a4
cosa = cosa =
) | ||a||
a/ cos [ , cosf = H
A a,
%L COSY =, cosy:H

/ou’ y

X/

We say that cosa, cos f and cosy are the direction cosines of a. The direction

1
cosines of a none zero vector a are simply the components of the unit vector (” ”Ja .
a

(LJ LW +— ik =cosai+cos fj+cosyk.
oS TRl TR TR

Since the magnitude of ( ]a is 1, it follows from the last equation that

cos’ a+cos’ f+cos’y=1.
Example 5 Fine the direction cosines of the vector a = 2i + 5] + 4k.

Solution: Form ||a|| =22 +5% +4% =445 = 3\/5 , we see that the direction cosines are

4

2 cosﬂ—i CoOsy =——=
35’ 35’ 35

Observe in Example 5 above that

Cosax =

cosza+coszﬂ+cos2y:i+2+ﬁzl.
45 45 45

2.3 Cross (Vector) Product
In this section, we introduce the cross (vector) product of two vectors and its applications.
The cross product is the other special product of two vectors, which yields vector unlike
that of the dot (scalar) product.
Definition 2.7 The cross product axb of two vectors a = a;ji + aj + azk and b = bji +
byj + bsk in R? is defined by

axb=(a,b, —a;b,))i+(a,b, —a,b,)j+(ab, —a,b))k.

An easy way to remember the last equation is to write it in a determinant form i.e.

i j k
axb=a, a, a,
b, b, b
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Then evaluating it by repeating the firs and second columns and multiplying it as follows

i.e subtract the sum of the product of the “southwest” diagonals form that of the product
of the “southeast” diagonals.
Example 1 Let u=i-2j+3k and v = j+4k. Determine the cross product uxv and vxu
Solution: From the definition of cross product we have
i ] k
uxv=[l -2 3/=[-2(4)-3D]i+[3(0)-1(H]j+[1(1) - (-2)0]=-11li—4j+k.
0 1 4

and
i ] Kk
vxu=0 1 4/=[13)—(-2)4]i+[4(1)—(0)3]j+[0(-2)—(D1]k =11k + 4] —k.
1 -2 3
Notice that the vector uxv and vxu in Example 1 are negatives of each other. This in not
a coincidence; in fact it directly follows from the definition of cross product of two
vectors as we may see in the theorem below. The proof of the theorem employs

properties of determinants which we will discus thoroughly in Chapter 2.
Theorem 2.8 Let a = a;i + a,j + ask and b = byi + byj + bsk in R’. Then

a) axa=0 ¢)a-(axb)=0
b) axb=—(bxa) d) b-(ax b) =0
Proof: a) By definition of cross product we have
i ] kK

axa=|a, a, a,|=0
a1 az a‘3

since a determinant with two equal rows is zero (Notice 0 is vector).
b) Further, using properties of determinants, we get

i j Kk [ T ¢
axb=a, a, a ~ —|b, b, byj=—(bxa)
b, b, b, a a, a

Since interchanging rows leads us to the negative of the original determinant.
c) Using the definition of dot product, cross product and determinant we have

i J k| |a a, a,
a-(axb)=[aji+a,j+a,k]-la, a, a,=la a, a,|=0
b, b, by |b, b, b
It can be proved similarly that b-(a x b) =0.

Note: From c) and d) of theorem 1.15 we conclude that the vector axb is perpendicular to
both a and b.
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Example 2 The cross product of any pair of vectors in the i, J, and K can be obtained by
the circular pattern illustrated in Fig. Below that is

ixj=k Jxi=-k
jxk=i Kxj=-i
- kxi=j ixk=—]j

S

Example 2 Let a=1i—j + 3k and b = 2i — 3j — k. Find a vector perpendicular to a and b.
Solution: By theorem 1.15 the cross product axb is one such vector thus the vector that
is perpendicular to both a and b is given by

i ] k
axb=1 -1 3|=(1-9)i+06+D)j+B+2)k ==8i+7j+5k.
2 3 -1
Other properties of the cross product that follow readily from the definition of cross
product are
cax b =c(axb)=ax(ch) ax(b+c)=(axb)+(axc)
(@+b)xc=(axc)+(bxc).
Theorem 2.9 Let a and b be vectors in R®. Then ||a>< b|| = ||a||||b||sint9, where 0 (0<0<n) is

the angle between a and b.
Proof: Let a = a;i + ayj + a;k and b = byi + byj + bsk using the definition of norm of a
vector, we get

”a>< b”2 = (a,b, —a;b,)” +(a;b, —ab,)* +(ab, —a,b))*
On expanding the squares, this can be rewritten as

= (a12 + a-z2 + a32)(b12 + bz2 + b32) - (albl + azbz + a3b3)2

=[al bl - @-b)*

=[al bl - (lallblcos0)*

=[al| bl =l || cos* &

[l o[} 1 - cos” 0

=[al] |b|[ sin* 0

since sin6>0 for (0<0<m), we can take the square root of each side of the equation and
obtain

o b]| = [af|o] sin 6
Corollary 2.10 Two nonzero vectors @ and b are parallel if and only if a x b = 0.
Proof: Left as exercise.

The result of theorem 1.16 leads to the area of a triangle that is defined by two vectors.
Consider the triangle whose edges are the vectors U and v. See the fig below.
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Area of triangle = (12) base x height
= (¥9)||ull|Msin®
= (72) [luxv]|
Area of a triangle with edges U and v =(2) |[uxV||

Example 3 Determine the area of the triangle having vertices A(3,-1,2), B(1,-1,-3), and
C4,-3,1).
Solution: The points B and C define the following edge vectors, starting from point A.

AB=<1~1-3>—-<3-12>=<-2,0,-5>
AC=<4,-31>—-<3-12>=<1,-2,-1>
i j Kk
and ABxAC=|-2 0 —5=—10i—7j+4k
1 -2 -1

Thus, the area of the triangle = (1/2))|| AB x AC |
= (1/2)||-10i =7 + 4K||

=%\/102 +7° +4° :%«/165.

The other important application of the vector (cross) products is in finding the volume of
a parallelepiped.

Consider the parallelepiped whose edges are defined by the vectors a, b, and c. See fig
below.

The area of the base is twice of the area of
the triangle defined by vectors a and b. Thus,

axb area of base = ||axb||. Further,
volume = |[axb||xh, where h is the height.
Observe that
’/C?‘ h = |[Prax]|
c-(axb
% - ( X ) (ax b)
} >—» Yy 2
a Ja<b]
_|c-(axb)|
Ja><b]

Thus the volume of a parallelepiped with adjacent edges a, b, and ¢ = iC -(ax b)i.
The expression c-(axb) is called the triple scalar product of a, b, and c. It can be
conveniently written as a determinant. Let
a=aji+a,j+ak, b=bi+b,j+bk, c=cji+c,j+c,k
i J k| |c, ¢, ¢ |a
Then c-(axb)=(cji+c,j+c;k)-la, a, a,|=la, a, a,[=|b, b, b,
bl bZ b3 bl b2 b3 Cl
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Thus
The volume V of a parallelogram with edges a, b, and ¢

al a2 a3
V=absolute value of |b, b, b,
Cl C2 C3

Example 4 Find the volume of the parallelepiped having adjacent edges defined by the points
A(l s 1 73)7 B(37771)> C(-27393): D(l 7278)'
Solution: The points A, B, C, and D define the following three adjacent edge vectors.

AB=<371>-<113>=<26,-2>
AC =< 233> — <113 >=<-32,0>

AD =<128>— <113 >=<0,1,5>
The volume of the parallelepiped is thus

2 6 -2
= absolute valueof -3 2 0
0 1 5

= absolute value of (116) =116.
We have also other triple products for instance (bxc)-c,(axb)xc,ax(bxc)are the

useful ones. The first is called a triple scalar product and the last two are called triple
vector products, since the products are vectors. See Exercise 1 for important relations
due to triple products.

2.4 Lines and Planes in R®

2.4.1 Equations of Lines in Space
Consider a line through the point P,(X,,Y,,Z,) in the direction defined by the vector
< a,b,c >. See the fig below. Let P(X, Y, z) be any other point on the line. We get

PP =<X-=X,,¥Y=VYo,2—2, >

—_—

The vector PP and <a, b, c> are parallel. Thus there exists a scalar t such that
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@=t<a,b,c>or
<X—Xp,Y—VY,,2—2, >=t<ab,c> (1)

This is called the vector equation of the line. Comparing the components of the vectors on
the left and right of this equation gives

X—X,=ta, y-y,=th, z-2z,=tc
Rearranging these equations as follows gives the parametric equations of a line in R’.

X=X,+ta, y=y,+th, z=1z,+tc —o<t<ow ()

in this last equation we get the points on the line as t varies.

Example 1 Find a vector equation for the line through (1,2,5) in the direction of <4,3,2>.
Give also the parametric equation of the line. Determine any two points on the line.
Solution: Let <a,b,c>=<4, 3, 1> and (X,, Y,,Z,) = (1,2,5), then from equation (1) we can
write the vector equation of the line as
<X-Ly-2,z-5>=t<43]1>.

And from equation (2) we give the parametric equation of the line by

X =1+4t, y=2+3t zZ=5+t —0<t<oo.
To find to points on the line we give t two arbitrary values, for instance t =1leads to the point
(5,5,6), and t = —1 leads to the point (-3, —1, 4).
Example 2 Find the parametric equation of the line through the points (-1, 2, 6) and (1, 5, 4).

Solution: Let (X,,Y,,Z,) = (=1,2,6). The direction of the line is given by the vector

<ab,c>=<154>-<-12,6>=<23-2>.
Consequently the parametric equations of the line are given by

X=-1+2t, y=2+3t, Z=6-2t —o0 <t < o0,
Symmetric Equations of a Line: From equation (2) we can clear the parameter t by writing
it as

a b C
provided that the three numbers a, b, and ¢ are nonzero. The resulting equations
X=X — Y=Y _ -1,
a b C
are said to be symmetric equations for the line through P, and P.

Example 3 find the symmetric equations for the line through (4,10, -6) and (7,9,2).
Solution: First let us find the reference vector as below
<a,b,c>=<410,-6>—-<79,2>=<-3,1,-8>.
Then if we let (X,,Y,,Z,) = (7,9,2) the symmetric equation of the line is given by
X=7 y=-9 z-2
-3 1 -8
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Note: If one of the numbers a, b, or ¢ is zero in (2), we use the remaining two equations to
eliminate the parameter t. For example ifa= 0, b # 0, ¢ # 0, then (2) yields the symmetric
equations for the line to be

Y=Y, -1,

X=X, =
0 b c

2.4.2 Equations of Planes in R3

Let P,(X,,Y,,Z,)be a point in a plane. Let <a, b, c> be a vector perpendicular to the plane,
called a normal to the plane. These two quantities, namely a point in a plane and a normal
vector to the plane characterize the plane. There is only one plane through a given point and
having a given normal. We will now drive the equation of a plane passing through the point
P, (X,,Y,-Z,) and having normal <a, b, c>. Let P(x, y, z) be any arbitrary point in the plane.
We get

7.7 (a,p, ¢)
PP =<X,Y,2>—<Xy, Yy 2 >
=<X—Xy, Y=Y, Z—2Zy >

Thlg F\)/ector ﬁ lies in the plane. Thus the vector

- 0
<a, b, c>and P,P are orthogonal. Their dot Pa L

product is zero. This observation leads to a

vector equation of the plane
<a,b,c>-PP=0.

or <ab,c>-<x-x,,y-Y,,2—-2,>=0.

Specifically the last equation yields the point-normal form of the equation of the plane
a(x—Xx,)+b(y-y,)+c(z-2,)=0 3)

and expanding the last equation and putting d = ax, + by, + cz,we obtain the general

form of the equation of the plane

ax+by+cy=d 4)
Observe that the components of <a, b, ¢c> appear as coefficients in (3) and (9), ane the
coordinates of the points P,(X,,Y,,Z,)in the plane appear inside the parenthesis in (3).
Example 1 Find the point-normal and general forms of the equation of the plane passing
through the point (1,2,3) and having normal <-1,4,6>.
Solution: Let (X,,Y,,Z,) =(1,2,3)and < a,b,c >=<—-1,4,6 >. Then the point normal form
equation of the plane is given by

—(x-1)+4(y-2)+6(z-3)=0
multiplying and simplifying the last equation we get the general form

e Xx+4y+6z=25.

Example 2 Determine the equation of the plane through the three points P(2,-1,1),
Q(-1,1,3) and R(2,0,-3).
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Solution: The vectors @ and PR lie in the plane. Thus @xﬁ will be normal to
the plane. So since

PQ=<-113>-<2~11>=<-322>
PQ =<2,0,-3>—<2,~11>=<0,l,~4 >
PQ xPR =-10i - 12j - 3k
finally putting (X,,Y,,Z,) = (2,~1,1) and <a,b,c >=<-10,-12,-3 > we give the point
normal equation by
—10(x=2)-12(y+1)-3(z-1)=0
or the general equation by
—-10x-12y -3z =-11.
Example 3 The normal vector to the plane 3x —4y +10z =8, can be given by taking the
coefficients of x, y, and z and forming a vector i.e 3i — 4] + 10K is the normal vector to
our plane.

Example 4 ( Graph of a plane)
Graph the equation 2x+3y+ 6z =12.

Solution: setting z=0gives x = 6

=0
=0,z=0givesy =4
=0

z ,y=0givesz=2

Mo <

The x, y, and z-intercepts are, 6, 4, and 2

respectively. As shown in the figure to the

left. We use the points (6, 0, 0), (0, 6, 0) and

(0, 0, 3) to draw the graph of the plane in the
y first octant.

Exercise 1
1. Leta=4i+2jand b=-2i+5]. Grapha+banda-b.

2. Use the given figures to prove the given result

i)a+b+c=0 ijatb+c+d=0
/\ C
S b
a

3. Sketch position vectors for a, b, 2a, -3b, a +b, and a-b.
i)a=<2,34> b=<1,-2,2>
ii)a=-+2j+3k b=-2j+k
4. Determine the scalar C so that the vectors a = 2i —cj+3k and b =3i+2j+ 4K are
orthogonal.
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12.
13.

14.
15.

16.
17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

a-b
2

Verify the vector ¢ =b — a is orthogonal to the vector a.

Determine a scalar € so that the angle between a=1+cj and b =i+ j is 45°.
Find the angle 0 between a = 3i —Kk,b = 2i + 2k.

Find the direction cosines of the vector b =1+ 2j+ 3Kk.

Find v =< X,, Y,,] > that is orthogonal to both a =< 3,1,-1> and a =< -3,2,2 >.

. Let a=+/3i+2j—-3k,b =4i—j+2k. Pr;".
. prove
a)[a-b| < [ao]
b) -+ b < [l + o]
&)+ b|" +[a~b]" =2Ja]" + 20|
Find the area of the triangle with vertices A(1,2,1), B(-3,4,6), and C(1,8,3).

Find the volume and surface area of the parallelepiped having adjacent edges defined
by A(1,2,5), B(4,8,1), C(-3,2,3), D(0,3,9).
Show that (a + b)x(a — b)
Let a, b, and ¢ be vectors in R®. Prove that a-(bxc) = (axb)-c.
Let a, b, and ¢ be vectors in R’. Prove that ax (bxc) = (a-c)b—(a-b)c.
Let a, b, and ¢ be vectors in R*. Prove that ax (bxc)xbx(cxa)+cx(axb)=0
Find parametric equations and symmetric equations for the line through the points
(5,3,1)and (2, 1, 1).
Fine the equation of the line through the point (1, 2, -4), parallel to the line x = 4 +2t,
y =-1+3t,z=2 + t, where -co<t<oo
Find the equation of the line through the point (2,-3,1) in a direction orthogonal to the
X+1 y-1_ z+2

3 2 5
Show that there are many planes that contain the three points (3, -5, 5), (-1, 1, 3) and
(5, -8, 6). Interpret your conclusion geometrically.
Find an equation for the line through the point (4, -1, 5), in the direction perpendicular
tothelinex=1-t,y=3+2t,z=15—4t, where —o0 <t<oo,
Show that the line x = 1+t,y = 14 —t, z=2 — t, where —o0 <t< oo, lies in the plane 2x —y
+3z+6=0.
Prove that the line x =4 +2t, y =5 +t, z=7 + 2t, where —oo <t< oo, never intersects the
plane 3x +2y —4z+7=0.
Find an equation of the line through the point (5, -1, 2) in a direction perpendicular to
the line x =5 -2t, y = 2 + 3t, z = 2t, where —0 <t< oo,
Find the line of intersection of the two planes

x—4y+2z+7=0,
and 3x+3y-z-2=0.

line
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3 Limit and Continuity

3.1 Definition of Limits
Until know we have been evaluating the limit of a function by using its intuitive

definition. That is we have said that limit of f (X) as X approaches to a is L and write
limf(x)=1L

X—a

if we can make f (X) close enough to L by choosing X close enough to a but distinct from

a. Although this intuitive definition is sufficient for solving limit problems it is not prices
enough. In this section we see the formal definition of limit, which we call the -6
definition of limit.

Definition 3.1 (Formal definition of limit)

The limit of f (X) as x approach a is L, written

lim f(x) = L

X—a
if every g >0, there exists a & > 0 such that |f(x) - L| <& whenever 0 < |x - a] < 4.
In Definition 3.1 above we should not that
I. The absolute value symbol is read as “ the distance between” for instance |X - a| is the
distance between x and a.
II. Notice that |X - a| >0. In other words X is not equal to a.
So with this in mind we can read the definition as:

“ The distance between f(X)and L can be made smaller than any positive number &,

whenever the distance between x and a is less than some number & and x does not
equal a.” Fig 3.1 below represents this idea pictorially.

v

L+g
IRRN

A
/
!

Fig 3.1

If we wish to use a form of Definition 3.1 that does not contain absolute value symbols

we can have the following alternative definition of limit.

Definition 3.2 lim f (x) = L if and only if for every >0, there is a >0 such that if x is in the
X—a

open interval (a — J, a +0) and x # a then f(x) is in the open interval (L —¢, L + ¢).
Using either of the definitions of limit given above we can prove the following theorem.
Theorem 3.3 If lim f(X) =L and lim f (X) =M then L=M.

The above theorem tells us that if a limit of a function f(x) at a exists then it must be
unique.
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3.2 Examples on limit

Even if it is very difficult to us the formal definition of limit to handle all limit problems
let us see how we can use it for evaluating same important limits that may help us in
developing rules by the way of which we can evaluate limits with out using the formal
definition.

Example 1 Assume that lim5x —7 = 3. By using properties of inequalities, determine a

X—2
&> 0 such that
if 0<|x-2/<& then |(5x—7)-3<0.01.
Solution: By considering |(5X -7)- 3| < 0.01 we can see that
(5x—7)=3<0.01 < [5x—-10| < 0.01
< 5x-2[<0.01
< [x-2/<0.002
so now it is clear that if we choose 6 = 0.002 statement holds but to check our result holds
we proceed as follows:
if 0<[x—2/<& then|x—2<0.002
= [x-2/<0.01/5
= 5jx—2/<0.01
= [5x-10/ < 0.01
= |(5x=7)-3|<0.01
Thus we have shown that the choice of & = 0.002 satisfies the statement
if 0<[x—-2/<& then |(5x—7)—3<0.01.

This example is for the specific € = 0.01. The general case can be seen as follows.
Example 2 Show that
lim5x-7=3

X—2

Solution:
We need to show that given € > 0 then there exists & > 0 such that
if 0<|x-2/ <& then |5x-7)-3<¢

To choose an appropriate & we start with |(5X -7)— 3| < & then we have
5x-10|<e = 5x-2/<¢
=[x-2/< £
5

Hence, we let

>
]
| o

this proves that lin;5x -7=3.
X—

Example 3 Prove that B Y -T.
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Solution:

Begin by letting & > 0 be given. Find 8 > 0 so that if, g <=1 éqgn |fle)=T<a
,1.e., |7=7 < ai.c., |o| ..:..But this trivial inequality is always true, no matter what

value is chosen for . For example, § -\%ill work. Thus, if 0 « = &|,<hdn it follows

(=) —7 <«

that . This completes the proof.
A similar proof as example 2 shows us that for any number a and k
limk =k (1)

X—a

Example 4 Prove that limkx = ka for any real number k.

X—a

Solution: from (1) it is clear that if ¢ =0
limkx =1im0=0=0.a=k.a.

X—a X—0

If k=0, letting >0 we must find a 5>0 so that
0<|x—a/<d = |kx—ka|<e
since
kx —ka| <& = |k|x—a] < &
£

= |x—a|<
k|

&
choose 0 = —.

i

lim (o +8) =d
Example 5 Prove that l':a (=" +3) .

. . _e»0 _d»0 .
Solution: Begin by letting be given. Find (which depends on ¢) so that if
O<lz-1<d  Ife)-4<e |fiz) =4l <«

. Begin with and “solve for” |x-1] .
Then,

Aol -4 <e |G +8) -4l <
iff|-’ -1|<a
Me-NE+1l<s
ko= e +1<e

We will now “replace” the term |X+1| with an appropriate constant and keep the term |x-1],

4€1

since this is the term we wish to “solve for”. To do this, we will arbitrarily assume that
(This is a valid assumption to make since, in general, once we find a dthat works, all smaller
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le=1] <&

values of dalso work.) . Then implies that -1 <x-1 <1 and 0 <x <2 so that 1
<|x+1] < 3 (Make sure that you understand this step before proceeding.). It follows that
(Always make this “replacement” between your last expression on the left and e. This
guarantees the logic of the proof.)

le=1llz+ill<|le-1@)<a

=1 (@) <

h—ﬂﬁ%
iff

. a
§ =min{l, i} ' ' _
Now choose (This guarantees that both assumptions made about #in the

. . . L O]e=1< &
course of this proof are taken into account simultaneously.). Thus, if , 1t

|f@)—4 <a

follows that . This completes the proof.

Example 6 Prove that

. . -1 >0 .
Solution: Begin by letting be given. Find (which depends on ¢) so that if

1 1
o<le-y<d |f@-3<e |- 5
<l=-3i< , then 3 . Begin with and “solve for” | x -3 |.
Then,

ICE |<' Lm'sl'“

F 1-+l
- 5 3+3 53+3

|<a

|ﬁ = (z + 3)
S(=x + 3]

a-
]JI-F‘LI{I
iff! +3

(-1)z-31
o P9

|{l
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<d
iff +3
1I=—3Iq£
iff! |=+3|

1 1
S o= —— <«
iff’ h+!l .

We will now “replace” the term |X+3| with an appropriate constant and keep the term |X-3|,

d<1
since this is the term we wish to “solve for”. To do this, we will arbitrarily assume that

(This is a valid assumption to make since, in general, once we find a dthat works, all smaller
le—8l<d<1
values of #also work.) . Then implies that -1 <x-3 <1 and 2 <X <4 so that 5

1 1 1
T E+d °F

<|x+3| <7 and (Make sure that you understand this step before
proceeding.). It follows that (Always make this “replacement” between your last expression
on the left and e. This guarantees the logic of the proof.)

1 1 1 1
il’-ﬂl m{i Il—il i'{:

1 1
' ilﬂ-’li'ﬂl
iff

1
T le=3| <«
iff

— 8] « L5
ige1= =5l .

& = min{1, 15¢}

Now choose (This guarantees that both assumptions made about #in the

. . . L O<lz=-3l<§
course of this proof are taken into account simultaneously.). Thus, if , 1t

=i

follows that . This completes the proof.

i;l% (=+Ji}-ﬁ'

1
Example 7 Prove that =
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: : _e»0 _&>0 .
Solution: Begin by letting be given. Find (which depends on k) so that if

O<|e—0| <4 |fl=) — 8] < = | f{=) — 8| < e

, then . Begin with and “solve for” | x-9|.

Then,

|#(=) =8| < Iiff|{3+\/i)— Bl <«
iff|\fi—l|<|

(At this point, we need to figure out a way to make | X-9 | “appear” in our computations.
Appropriate use of the conjugate will suffice.)

va +3)
oo sl

- B)(A =A*— B2
(Recall that (4= B)A +5) )

-1
iff VE+S

-
J5:—LI +9 {I.
| = 9] 7;—1 <t
iff V= +3| .
v +3|

We will now “replace” the term with an appropriate constant and keep the term |X-9|
, since this is the term we wish to “solve for”. To do this, we will arbitrarily assume that

|-¢:E

iff

(This is a valid assumption to make since, in general, once we find a #that works, all

le—9] <& <1

smaller values of #also work.) . Then implies that -1 <x-9 <1and 8 <x<10

1 1 1
i< N<vIl+d o3 “e+s “7Es3
so thatﬁ-l- V& +3l vio+ and ¢+3 I +’I I"i.s(Make sure

that you understand this step before proceeding.). It follows that (Always make this
“replacement” between your last expression on the left and . This guarantees the logic of the
proof.)

o= [z <E Y g <
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1
je=a| <
iff T VA4 T
iff||=-i|-l=.." (\ﬁ'l"]l.

§ = min{l, (vE + )]

Now choose (This guarantees that both assumptions made about #in

n{h—mciﬁ

the course of this proof are taken into account simultaneously.). Thus, if

follows that Iﬂ'} - !l <4

Example 8:

. This completes the proof.

i -1
lim 3xsin—-=0
x-30 X
Solution:
We need to show that given € > 0 then there exists 6 > 0 such that

1
xsin—-0l<
D{Ix_q{'simphesk X 4 :

Looking for &:
1
sin—|<s
X

Hence, we let

b= E

3

Negation of the Existence of a Limit

Next we present an example of a function that does not have a limit at a certain point. For
a function f not to have a limit at a means that for every real number L, the statement “L
is the limit of f at a” is false. What does it mean for that statement to be false? By
Definition 3.1, “L is the limit of f at a” means that

For every €>0 there is a number 6> 0 such that
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if 0<|x —a|<d, then |f(x)—L|<e
for this statement to be false, there must be some £>0 such that for ever 6> 0 it is false that
if 0<|x —a|<d, then |f(x)—-L|<e 2)
But to say that (2) is false is the same as to say that there must be a number x such that
0<|x —a|<d and |f(x)—L|>¢
Thus to say that the statement lxmg f(x) =L is false is the same as to say that there is

some £>0 such that for ever 6> 0 there is a number x satisfying
0<|x —al<d and |f(x)—L|>e.
Example 8 Let f be defined by

2
f(x):{x for x>0
—1 for x<0

Solution: Let L be any number. We will prove tht the statement “L is the limit of f at 0” is
false by letting e=1/2 and showing that for any 6>0 there is an x satisfying
O<|x —al<d and |f(x)—L|>V=¢
Let & be any positive number. If L < — % , then we let x =8/2 and note that f(x) = x* so that
2

5 11
|f(X)—L|—T—L ZT —>5—8
If L >- 1'%, then we let x =— 8/2 and note that f(x) = -1, so that
I 1
fX)-L=|-1-L|=|-1l+L|>]l-—| ===
1001 = 1=t =t Uzp-2l= Lo

In either case we have shown that for any >0 there is an x satisfying
O<|x —al<d and |f(x)—L|>Va=¢
There for f has no limit at 0.

Class work

Using the &-0 definition of limit, prove that

L lim2x—1=1 2. limJx-1=1 3. 1irr21x2:4 4. lim2x—1#3
X—> X—> X—> X—>

3.3 One-Sided Limits

The notion of limit discussed in the preceding sections can be extended to one-sided limit
as we can see from the definition below.

Definition 3.4 a) A number L is the right-hand limit of f at a denoted by lim f(x)=L

if for every € > 0 there is a number 6>0 such that
if 0<x-a<d, then [f(x)-L|<e
b) A number L is the left-hand limit of f at a denoted by lim f(x) =L if for every € >0

X—a~

there is a number 6>0 such that
if —6<x-a<0, then [f(x)-L|<e.

Example 9 Show that lim+vx—-1=0

x—1*

Solution: Let € > 0 be given we need to show there is a 8>0 such that
if 0<x-1<4, then ‘\/x—l —O‘ <é¢
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form ‘\/ X— 1‘ <& sequaring both sides we get 0 < x—1< &’ , hence choose 9 = g%,
Then

if 0<x-1<2, then ‘\/XT—O‘:‘\/H‘<\/E=8.

Below we give a theorem that relates one sided limit with a general limit the student can
see Robert Ellis and Denny Gulick for the proof of the theorem.
Theorem 3.5 lim f (x) exists and is equal to L if and only if lim f(X) and lim f(X)both

exist and both are equal to L.
Example 2 Observe that in Example 1 even if the right hand side of f at 1 exists since the
left side limit of f at 1 does not exist, as the function is not defined for X < 1 then

lim+/X—1 does not exist.

x—1

3.4 Infinite Limits and Infinite Limits at infinity

According to Definition 3.1 if a function f has a limit L at a then L is a real number, so if
the value of a function f becomes larger and larger in absolute value as X approach a from
the right or from the left of a then f has no limit a. Now we introduce a definition that
addresses such a case.
Infinite Limits
Definition 3.6 Let f be defined on some open interval (a, ¢).

a. If VN, 36 >0 such that

if 0<x—a<othen f(x)>N
then lim f(x)=o0

x—a*

b. If YN, 36 >0 such that
if 0<x—a<othen f(x)<N
then lim f(Xx) =—o0

x—a*
c. In either case (a) or (b) the vertical line x = a is called a vertical asymptote of the
graph of f, and we say that f has an infinite right-hand limit at a.

There are analogous definitions for the limits
lim f(x)=o0 and lim f(X)=-o0

X—a

Note if lim f(x) =1lim f(X) = oo then we right simply lim f(x) =00 for the common

expression and say that the limit of f(x) as x approaches a is o« and that f has an infinit
limit at a.

Example 10 Show that lim1/x* =oo. Show also that the line X = 0 is a vertical

asymptote of the graph of 1/x.
Solution: Observe that for any N>0,

if 0<X<L,then L>N

JIN X’

Thus lim 1/x? = oo, and thus the line x = 0 is a vertical asymptote of the gragh of 1/x*.

x—a*
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Once more for any N>0

if —L<x<0,then LZ>N
X

JN

Thus lim 1/x* = o, again x = 0 is a vertical asymptote of the gragh of 1/x*.

X—a

Finaly since lim1/x* =co = lim 1/x?, lim1/ x> = co.

Xx—a~ x—a* X—a

Limits at Infinity
Until now the limits we have seen have been limits of a function f at a number a. Now we
consider the limit of f as x becomes larger and larger in absolute value.
Definition 3.7 a) lim f (x) = L if for every £>0 there is a number M such that
X—»00
if x>M,then [f(x)—L|<¢
b) lim f(x) =L if for every >0 there is a number M such that
X—»—00
if x<M,then |f(x)—L|<¢
¢) Ifeither lim f(X) =L or lim f(X) =L, then we call the horizontal liney =L a
X—>0 X—>=0
horizontal asymptote of the graph of f.
Example 11 Show that lim1/x* =0 and lim 1/x* =0.

X—>0 X—>—00

Solution: Let €>0. To show that lim1/ x> =0 we must find an M such that

X—0

if x> M, then %—O‘: Lz :Lz<g
X X X
But then
1 1
if Xx>—,then —<¢
Ve X’
Therefore we let M = 1/ Ve and conclude that lim1/x> =0 . To show that lim 1/x> =0
We simply choose M = —1/ e Then M<0, and thus
if X< M, then %—0‘=i2< 12 =g
X x> M

this proves that lim1/x* =0 .

X—>—0
Note here that y = 0 is the horizontal asymptote of the graph of 1/x’.
Infinite Limits at infinity
We now see the last possible formal definiton of limit that is not considered yet.
Defintion 3.8 lim f (X) = oo if for any real number N there is some number M such that

X—0

if x>M, then f(x)> N.
Note the definition of
lim f (X) = —o0, lim f(x)=o0, and  lim f(X)=-o are

X—>00 X—>—00 X—>—00

completely analogues.
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Example 12 Show that lim x* = oo,

Solution: We use the fact that x* > x for x > 1. For any N, choose M so that M>1 and M
> N. Then it follows that
if x>M,then x’>x>M >N
therefore by Definition 3.8
limx® = oo

X—00
Similarly, we conclude that for any positive integer n,
lim x" = oo,

X—0

3.5 Limit Theorems

Even if we have developed important techniques of solving limit problems by using the
formal definition, I hope by now we have realized that it is not that easy to use this
definition to solve each and every problem. Nevertheless the student had encountered in
his or her earlier studies of calculus rather easy ways of evaluating limits by the help of
different rules. Here we state and prove some of them by using Definition 3.1 and use
them to evaluate more complex limit cases.

Theorem 3.9 Assume that lxlrgl f(x) and lxlng g(x) and c is a constant then

1. lim[ f(X)+ g(x)]=1lim f (X) + lim g(X)

2. limcf (x) =clim f (x)

3. lim f(x)g(x) = lim f (x)-lim g(x)

f(X) ~ lim f(X)

X—a

4 if Timg(x) =0 and lim—+C) exists then lim _ .
x—a Xx—a g(x) Xx—a g(x) £E2 g(x)

Proof: Here we proof (1). Statement (2), (3), and (4) are left as exercise.
Let lim f(x)=L and limg(x) =M we need to show for every >0 there is some 8>0 such

that if 0 <|x—a|< &, then |f (x) + g(x) — (L + M)| < &. Observe that lim f (x) = Liff for
every &/2 >0 there is a 8;>0 such that if 0< |X — a| <9,, then | f(x)— L| <e&l2.
Similarly lgr; g(X) = M iff for every &/2 >0 there is a 5,>0 such that

if 0<[x—a|<d,,then|g(x)-L|<e/2.

Let 6 = min {3y, 6.} then we can see that
if 0<|x—a|<ds,then|f(X)+g(x)—(L+M)<[f(X)-L|+|g(x)-M|<e/2+&/2=¢.

Thus lim[ f (X)+ g(x)]= lim f () + lim g(x) = L + M.

In addition to these rules you have also seen that for instance if f is a polynomial or a rational
function and a is in the domain of f, then

lim f (x) = f(a) etc

Now let as quickly go through some important limit finding techniques that would
require a little bit of caution before applying the rules in Theorem 3.9.
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2 —
Example 13 Find lim X' -4

x-2 X—2

2

Solution: Direct substitution of 2 in implies that we have 0/0 which is

indeterminate thus we cannot use Theorem 3.9 (4) but for x#0 simplification of the
rational expression would lead us to

XP =4 (X=2)(X+2) _y
X—2 X—2

+2

thus
2

lm 2%~ lim(x+2) = 4.
X2 X —2 x—2

2

Example 14 Find lim
POVXE+1-1
Solution: Again here we cannot use Theorem 3.9 (4), as we get from direct substitution
the indeterminate 0/0. But for x+0 rationalizing the denominator we have:
: X’ . x> AXP+1+1
lim————-=1im
SOx2 411 20X 411X +1+1

X2Ax?+1+1 _limxzx/x2 +1+1
x—0 (X2 +1)_1 x—0 )(2

=lim(x/x2 +1 +1)=2.

X—0

Example 15 Find lim XX
X—>
Solution: Observe that
% if x=0
X|X| - 2 -

—-x° if x<0
Since x|x| =x2 for x>0, we have

lim x|x| =limx*>=0

x—0" x—0"

and also since X|X| =—x* for x <0, we have

lim Xx| = lim-x* =0

Xx—0" Xx—0"

therefore we conclude that

lim XX =0.

X—0

. X+1 .
Example 16 Prove that lim —— does not exist
o1 |X+ ]
Solution:
im 2 = im 2  mor=1and tim S - fim X - gimo1= -1

x—>—1" [ X + 1| x->-1" X +]1 xo-1* X——1" |x + 1| Xx—>—1" — (x + 1) X——1"
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Consequently

. +1 .o X+l
lim # lim

ool X+ o x4 ]

.o X+1 .
Thus lim —— does not exist.

-1 |X+ ]
2 2
Example 17 Find lim X—2x and lim X—2x
x—o X© —] x>0 X —1]
. o . X —2x* 5 . .
Solution: Deveiding the numerator and the denominator of —; " by X~ in the limit we
X —
have
2
lim X 22x =liml/x 2 _ 5
x> XT—1  xo=]-1/X
similarly
_oX=2x2 L 1/x=2
lim — = lim =—
x> X7 =1 xo= ]1-1/X
. . X —2x’
Observe here that y = -2 is the horizontal asymptote of the graph of f(x) =—;
X —_

X —2x*
X2

Example 18 Let f(x) =

. Find all vertical asymptotes of the graph of f.

Solution: Since f is not defined at x =1 and x = —1 they are the possible vertical
asymptotes but to confirm our claim we use limit:

Since
2
lim X222 —gim X 172X and
x>t X% —1 x->I" X+1 x—=1
. X=2x? ) X 1-2x
lim 5 = lim — =0

ot X2 =1 ot X+1 x=1
it follows that x =1 and x = —1 are the vertical asymptotes of the graph of f.
The next theorems give two additional properties of limits. For their proofs the student may
refer any major calculus books.
Theorem 3.10 If f(x)<g(x) for all X in an open interval that contains a (except
possibly at a) and the limits of f and g both exist as x approaches a, then
lim f (X) < lim g(x).
X—a X—a
Theorem 3.11 (The Squeezing Theorem) If f(x) < g(x) <h(x) for all x in an a open
interval that contains a (except a possibly at a) and
lim f (x) =limh(x)=L
then
limg(x) = L.
I don’t think the student is new for these theorems and for the special limit that is the
consequence of especially the Squeezing Theorem. i.e.
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. sinX
lim =

=0 X

1.

. .1
Example 19 Find lim x> sin —
X—> X

. . L1
Solution: Since —1<sin— <1, VX =0, we have
X

1
—x*<x?sin—<x* Vx#0
X

Moreover lim-x*> =0 and lin01 x> =0, thus by the squeezing theorem we have
X—>

Xx—0

. 1
lim x? sin—= 0.
X—0 X

x* —x?

Example 20 Find lim
xon X +1
x* —x?

Solution: Simplifying we can evaluate the limit as below

4 2 2 2 2
lim X“ =X _ lim X7 (X —1) _ lim X“(x=1)(x+1)
xow X+1 0 o X +1 X0 X+1

=limx*(x—1) = oo,

X—00

Class work
Evaluate each of the following limit as a real number, o, — oo, if it exists.

X2 —x-2 sin 2x VI+X—=4/1=X

I. im— 2. lim 3. lim
x—>-1 X+1 x>0 ¥ X—3" X
_ X’ if x<1
4. lim 1= S08X 5. 1im f (x) where f(x) = s
x—0 X x—1 (X — 2) if x>1

3.6 Continuity of a Function and the Intermediate Value Theorem
Definition 3.11 A function f is continuous at a number a in its domain if
lim f (x) = f(a)

f is said to be discontinuous at a if f is not continuous at a.
Notice that definition 3.11 implicitly requires three things if f is continuous at a:
1. f(a) is defined (that is, a is in the domain of f)
2. lxlrg f (X) exists (so f must be defined on an open interval that contains a).
-

3. lim f () = f(a)

2_x-2

Example 21 Let f(x)= limx—. Determine the number at which f is not

x>-1 X+1
discontinuous.
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Solution: Notice that f is a rational function. Since the denominator of fis 0 for x = -1, f
is defined for all x except at —1. Thus f is discontinuous only at x = -1 else where it is
continuous in its’ domain.
Example 22 If we redefine the function f in Example 21 as:
X =x-2 .
F0={" xs1 if x=-1
-3 if x=-1

then since

2— —_— —
lim £ (x) = Tim X=X =2 _ i $Z2OHD 5

X——1 x—>-1 X+1 x—>-1 X+1
and hence lirnl f(X)=-3=1(-1

f is continuous.

Notice that we are able to make f in Example 21 to be continuous by redefining it at —1 as
in Example 22. Such discontinuity points like —1 in our example are called removable
discontinuities because we can remove the discontinuity of the function by redefining the
function just at the discontinuity point.

1 if x<0
Example 23 Let f(X) :L2 and g(x) = ) then we can see that, f is not
X 0 if x>0

defined at 0 and linol f(X) = 0, g is defined at 0 but ling g(x) does not exist as lim g(x) =1
X—> X—> X—>0"
and lim g(x) = 0.Thus both functions are not continuous at 0. We say we have infinite
x—0"

discontinuity at 0 in case of f while we say we have jump discontinuity at 0 in case of g.
Clearly combinations of continuous functions follow immediately from the corresponding
results for limits.

Theorem 3.12 If f and g are continuous at @ and ¢ is a constant, than the following
functions are also continuous at a.
i.f+g in.f-g iii. cf iv. fg v. f/gifg(a) # 0.
So using theorem 3.12 we can show that every polynomial function is continuous over R
every rational function is continuous everywhere except at numbers where the
denominator is 0.

Another way of combining continuous functions f and g to get a new continuous function
is to form the composite function f o . This fact is a consequence of the following theorem.

Theorem 3.13 If f is continuous at b and limg(x) =b then
lim f(g(x)) = f(b) = f(limg(x))
The following theorem tells us that the composition of two continuous functions at a

given number is continuous.
Theorem 3.14 If g is continuous at a and f is continuous at g(a), then f o g(x) = f(g(x))

is continuous at a.
Class work
Where are the following functions continuous
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-
VX*+3-2
One-Sided Continuity

Definition 3.15 A function f is continuous from the right at a point a in its domain if
lim f(x) = f(a)

a) () =|x| b) h(x) =

A function f is continuous from the left at a point a in its domain if
lim f(x)= f(a).
X—a~

1 if x<0
Example 24 the step function g(Xx) = {O i N is continuous from the left at 0
| X >
Since lim g(Xx) =1= g(0)but it is not continuous from the right at 0 as lim g(x) # g(0)
Xx—0" x—0"
verify.

Continuity on interval
Definition 3.16 a) A function is continuous on (8,b), if it is continuous at every point in
(a,b).
b. A function is continuous on [a, b] if it is continuous on (a,b) and is also continuous
from the right at a and continuous from the left at b.
Class Work
Let f(x)=+/1—x> .Show that fis continuous on [-1, 1].

An important property of continuous functions is expressed by the following theorem.
Theorem 3.17 (The Intermediate Value Theorem)
Suppose that f is continuous on the closed interval [a, b] and let N be any number strictly

between f(a) and f(b). Then there exists a number ¢ in (a, b) such that f(c) = N.
Example 24 Show that there is a root of the equation

4% —6x* +3x-2=0
between 1 and 2.
Solution: Let f(x)=4x’—6x>+3x—2.We are looking for a solution of the given

equation, that is, a number C between 1 and 2 such that f(c) = 0. Therefore we take a = 1,
b=2,and N =0 in Theorem 3.17. We have

f()=4-6+3-2=-1<0 and f(2)=32-24+6-2=12>0
Thus f(1)<0< f(2), that is, N=0 is a number between f(1) and f(2). Now f is
continuous since it is a polynomial, so the Intermediate Value Theorem says there is a
number € between 1 and 2 such that f(c)=0.In other words, the equation

4x* —6x*> +3x—2 =0 has aroot c in the interval (1, 2).
Class Work

1. Find A that makes the function

o #2-2 z<l
*":"’:"{_41-—4 if1<a

continuous at X=1.
2. Demonstrate that the equation cos X+ X =0 has at least one solution.
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4 Derivatives

4.1 Definition and Properties of Derivative; the Chain Rule

In your previous calculus course you were introduced with the definition of the derivative
of a function, properties of derivatives, the chain rule and important application of the
derivative. Here our aim is to revise some of these concepts and introduce the derivatives
of some more functions.

Definition 4.1 The derivative of a function f at a number a, denoted by f'(a), is

f(@zhmigtjﬁﬁ (1)
X—a X_a

if this limit exists.
If we write X = a + h, then X —a =h and x approaches a iff h approaches to 0. Therefore an
equivalent way of stating the definition of the derivative is

f(a+h)— f(a)
- :

This last definition is more convenient for finding the derivative of a function.

)

f'(a) =lim

Example 1 Find the derivative of the function f(X)=x*+3x+2at—1.
Solution: By definition

Penzwnn4+m—fen'

-0 h
thus
f'(—1)=lim[( 1+h)" +3(-1+h)+2]-[(-1)" +3(-1) + 2]

h—0 h
. 1-2h+h*=3+3h+2

= lim
h—0 h

2

Cim " limhan =1,

h—0 h—0

I hope the student remembers that the slope of the tangent line to the graph of the function
fat a point (a, f(a)) is given by the derivative of fatai.e f'(a) consequently using the

point-slope form of the equation of a line, we have the equation of the tangent line to the
curve y = f(x) at a point (a, f(a)) is given by y— f(a) = f'(a)(x —a). For instance the
equation of the tangent line to the graph of f(X)=X> +3X+2 at (-1, 0) in our Example 1 is
givenby y— f(-1)= f'(-1)(x—=(=1)) or y—0=1(x+1) or simply y = x+1.

Given a function f, we associate with it a new function f', called the derivative of f,
defined by:

£1(%) = lim f(x+h)— f(x).

h—0 h
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We know that the value of f' at x, f'(x),can be interpreted geometrically as the slope of
the tangent line to the graph of f at the point (X, f(X)).

EXAMPLE 2
Find the derivative of f(x) := x+/ x+ 1

_ .. f(x+h-1(x) The definition of
f(x)= lim —————= L
h— 0 h derivative.
lim [x+h+«/(x+h)+1]—(x+\/x+l)
h—>0 h

Replace f(x+h) and f(¥ by the
corresponding expressions.

h+\/(x+h)+1—\/x+1

! Simplify.
hos 0 h

h+[\/(x+ h) + 1 —\/x+ IJ.[\/(X+h)+ 1+\/X+ IJ
lim I:\/(X+h)+1+\/X+IJ
h—>0 h

Rationalize the radicals.

Some steps are omitted — see theomplete solution

1 } Divide both the

lim [1+ numerator and
h—0 V) + Thyx+ 1 denominator by h (h

IS nonzero).
1

24/x+ 1

Therefore, the derivative of + / x+ 1 is 1 +

1+

1
24/x+ 1

Here, the domain of the function x> —1, while the derivative is
defined for all values of > —1.
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Definition 4.2 A function f is differentiable at a if f'(a)exists. It is differentiable on

an open interval (a, b) [or (a, ®) or (-0, a) or (-00, )] if it is differentiable at every
number in the interval.
Example 3 Show that f(X) = |X| is not differentiable at 0.

Solution: Observe that

X =

x if x>0
—-x if x<0

then for x >0 using (1) we have

tim X i X i =1
x=0" X —0 x—>0" X x—>0"

and for x<0
lim X0l lim —= = lim—1=—1
x=0" X —0 x—0" X X—0

which implies

-l
x>0 X —0)

does not exist

thus f'is not differentiable at 0.
Theorem 4.3 If f is differentiable at a, then f is continuous at a.
Proof: To prove that fis continuous at a, we have to show that lim f (x) = f(a).

We do this by showing that the difference f(x)— f(a)approaches 0.

For x # a we can divide and multiply by x — a
We did this in order to involve the difference quotient. Thus we can use the Product Law
of limits to write

tinff 00— f @] = im0 =& (x—a)

—a
= limwlim(x —-a)
X—a X—a X—a
=f'(a)-0=0.

Therefore
lim f(x) =lim[ f(a)+ f(X)— f(a)]

= lim f (@) + lim[ f (x) - f (a)]
= f(a)+0= f(a).

and so f is continuous at a.
Note: the converse of Theorem 4.3 is false: that is, there are functions that are continuous

but not differentiable. For instance, the function f(X)= |X| is continuous at 0 because
lim f (x) = 1ing|x| =0= f(0).

But as we have seen in Example 3 that f is not differentiable at 0.
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Let me remind u some of the differentiation rules that u have developed in your previous
calculus course. I advice the student to check on these results using the definition of
derivative.

The power rule: If f(x)=x" for any real number n is given by f'(x)=nx"".
Derivatives of sine and cosine: (sin X)'=cos X and (cos X) = —sin X.

o : i : 1
Derivatives of exponential and logarithmic functions: (¢*)'=e” and (Inx) =—.
X

etc.
We also need to revise the rules of finding the derivatives of combined functions as in the
table below.

Let f and g be differentiable then

1. (cf)=cf" 2. (f+g)=f+g'
3. (f-g)=1"-¢g 4. (fg)=f'g+ fg'
5 (ij _foxfy 6. (cy=0
g g
Class work
Find the derivative of each of the following functions
1. f(x)=x> +5x>+25 2. f(x):xz—L2
X
1
3. f(x)=x*+4/x 4. F(X) = XX+ ——
(X) (X) -7
5. f(x)=xsinX 6. f(x)=sinXcosX
7. f(X)=tanXx 8. f(X)=cscx
2
9. f(x)= sec X 0. f(x):x tan X
1+ tan X sec X

The Chain Rule

The rules that we have introduced till now are not enough to find composition of
functions thus we need to develop an appropriate to handle these cases. The Chain Rule is
such a rule.

Theorem 4.5 If the derivatives @'(x) and f'(g(x))both exist, then

(fo0)(x)=f'(g(x)g'(x)

Example 4 Find h'(x) if h(x) = cos2x

Solution: Let f(x)=cosx and g(x)=2x. Then h= f o g. Since
g'(x)=2 and f'(x)=-—sinXx

we conclude that
h'(x) = £'(g(X))g'(X) = (—sin 2X)(2) = —2sin 2X.

Example 2 Find h'(x) if h(x) = v1+ x*

Solution: Let g(x)=1+x*> and f(x) =Jx consequently h= f o g.Then
g'(x)=2x and f'(x):L for x> 0.

24/x
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Therefore

1 X
h'(x) = f'(9(X))g'(X) = ——=2x= :
2V1+ %2 VI+x3
Class Work
Find the derivative of the functions
1. y=(x"+2x>+3)" 2. !

Y= ——
VX +2x+1
3.y = cos(sin (tan X)) 4. y = +Jcos(sin* X)

Find the equation of the tangent line to the curve at the given point

5. (X =x2+x=D", (1,0) 6. y=vx+1/x, (1,/2)

4.2 Inverse Functions and Their Derivatives

In pre-calculus mathematics courses we defined a function f as a relation in which no two
elements of the relation have the same first coordinate. Also we have seen that for same
of the functions the relation that is found by interchanging the entries of the ordered pairs
can be again a function and we called such a function the inverse of the original function.
In this section we discuss general properties of inverses and their derivatives.

4.2.1 Inverse Functions

In order to define the inverse of a function, it is essential that different numbers in the
domain always give different values of f. Such functions are called one-to-one functions.
Definition 3.1 A function f with domain D and range R is one-to-one function if
whenever a #bin D, then f(a)=# f(b)inR.

Note from Definition 3.1 we see that every strictly increasing function is one-to-one,
because if a <b, then f(a)< f(b), and if b <a, then f(b)< f(a)in short if a # b, then
f(a) = f(b). Similarly, every strictly decreasing function is one-to-one. We now give the
definition of inverse functions in terms of one-to-one function.

Definition 3.2 Let f be a one-to-one function with domain D and range R. A function g
with domain R and range D is the inverse function of f, provided the following condition
is true for every X in D and every y in R:
y = f(x) if and only if x=g(y).
If a function f has an inverse function g, we often denote g by f ~'. Of course we must note

here that almost always f ' is different from 1/f.

If f is a one-to-one function with domain D and range R, then for each number y in R, there
is exactly one number x in D such that y = f(X). Since x is unique, we may define a
function g from R to D by means of the rule X = g(Y). g reverses the correspondence given
by f. We call g the inverse function of f. In summary, a function f has an inverse if and only if
it is one-to-one. This conclusion is especially easy to apply to differentiable functions whose
domains are intervals. We know that a function f is strictly increasing on I (and hence has an
inverse) if f'(x)>0forall xinIorif f'(x)>0 forallxinIand f'(X) =0 for at most
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finitely many values of X. Similarly, f is strictly decreasing on I (and hence has an inverse) if
f'(X)<Oforall xinTorif f'(X)<0 forall xinIand f'(x) =0 for at most finitely many

values of X.

Example 1 Let f(x)=2x" +3x’ +6x—4 then since f'(x)=17x*+15x>+6>0 fis

strictly increasing consequently it is invertible.
Properties of Inverses
From Definition 3.2 and the theories we developed above we can drive the following

elementary relationships between f and f .
I. Domain of f '=range of f and range of f "= domain of f.
IL (f7)y'=f
I f ' (f(x)) = x for all X in the domain of .
IV. f( f ' (y)) =y for all y in the range of f.
In some cases we can find the inverse of a one-to-one function by solving the equation

y = f(X) for X in terms of y, obtaining an equation of the form X = f ' (y). The following
guidelines summarize this procedure.

Guidelines for finding f ™' is simple cases

1. Verify that f is a one-to-one function (or that f is increasing or is decreasing)
throughout its domain.
2. Solve the equation y = f(X) for X in terms of y, obtaining an equation of the form

x=f7(y).
The success of this method depends on the nature of the equation y = f(X), since we

must be able to solve for X in terms of Y.
Example 2 Let f(x)=2x+ 3. Find the inverse of f.

Solution: Following the guidelines, first since f'(X) =2 >0, f is increasing for all real

number X and thus f ™' exists for all real number X.
Now as guideline 2, we consider the equation

y=2X+3
and solving for X in terms Yy, we obtain
y-3
X -_——=
2
we now let
4 y-3
==
Since we customarily use x as the independent variable, we replace y by x to obtain
Fix)= X3
5

Example 3 Let f(x)=x>-3 for x> 0. The inverse function of f.
Solution: The domain of f is [0,%), and the range is [-3,%). Since f is increasing, it is

one-to-one and hence has an inverse function f ' that has domain [-3,0) and range
[0, 0).
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As in guideline 2, we consider the equation
y=x"-3

X=1,y+3.

Since x is nonnegative, we reject x =—,/y +3 and let
f~'(y) =4y +3, orequivalently, f'(x)=+/x+3.

Graphs of Inverse Functions
There is an interesting relationship between the graphs of a functions f and f ™. We first

and solve for X, obtaining

not that b = f(a) is equivalent to a = f ~'(b). These equations imply that the point (a,b) is
on the graph of f if and only if the point (b,a) is on the graph of f . But (a,b) and (b,a)
are symmetric with respect to the line y = X. Thus the graph of f ™' is obtained by simply
reflecting the graph of f through the line y = X.

Example 4 For each function f, sketch the graph of fand f ' on the same coordinate
system.

a) f(x)=2x+3 ¢) f(x)=x>-3 ¢) f(x)=sinx

Solution: In each case the graph of f ' is obtained by reflecting the graph of f through
the line y = X. The graphs appear in fig 3.1 below.

Exercise 4.1
I Determine whether the given function has an inverse. If an inverse exists, give the domain
and range of the inverse and graph the function and its inverse.

1. f(x)=4x+3 2. f(X)=+9-x>, 0<x<3

3. f(X)=x-sinx 4. f(X)=In(3-X)

5 f(x):2—X2 6. f(x)=3x+1

I Showfl)l(a_s an inverse if

7. f(x)=jmdt for all x. 8. f(x)=jsin4(t2)dt for all x.
0 0

4.2.2 Continuity and Differentiability of Inverse Functions
If f is continuous, then the graph of f has no breaks or holes, and hence the same is true for
the (reflected) graph of f ~'. Thus we see intuitively that if f is continuous on [a,b], then '
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continuous on [ f (), f (b)]. We can also show that if f is increasing, then so is f . These
facts are stated in the next theorem that is given with out a proof.

Theorem 3.3 If f is continuous and increasing on [a,b], then f has an inverse function
f ' that is continuous and increasing on [ f (a), f (b)].
We can also prove the analogous result obtained by replacing the word increasing in
Theorem 3.3 by decreasing.
The next theorem provides us a method of finding of the derivative of an inverse function.

Theorem 3.4 Suppose that f has an inverse and is continuous on an open interval I
containing a. Assume also that f'(a) exists, f'(a)=0, and f(a)=c. Then (f')'(c)
exists, and

1
fy@E)=—-— 1
(t7)(c) @) (1)
Proof Using the fact that f ' (C) = a and definition of the derivative, we find that
-1 _f-l -1 —
(f -1 )V(C) — hm f (y) f (C) — hm f_l (y) a (2)
as y-c¢ e F(F(y) - 1@

provided that the latter limit exists. We will simultaneously show that it does exist and
find its value. First notice that f ™' is continuous at ¢ by theorem 3.3. Therefore

limf'(y)=f"'(c)=a
y—C

so that if x = f ~'(y), then x approaches a as y approaches c. Moreover, the fact that f
has an inverse and f ~'(c) =aimplies that f '(y)=a for y #c. Consequently (2) and
the Substitution Theorem for Limits (with x substituting for f ~'(y) )imply that

(FY(c) = lim f_l‘l(y)—a i X—2
yoe f(F(y)—f(a) a2 f(x)-f(a)
1 1
limM f'(a).
X—a X—a

It is convenient to restate Theorem 3.4 as follows.

Corollary 3.5 If f'is the inverse function of a differentiable function f and if

f'(f (x)) #0, then

e 1
R TERC)

Example 1 Let f(x)=x"+8x’ +4x—2.Find (f )" (-2).

Solution: In order to use (1), we must first find the value of a for which f(a) = —2. But

f(0) = -2, so a = 0. Since f'(x)=7x°+24x> +4, it follows that f'(0)=4. Thus we

conclude from (1) that

€)

ENPI
(f )(2)——f,(0)

e
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Example 2 If f(x)=x’+2x—1, prove that f has an inverse function f~', and find the
slope of the tangent line to the graph of f ' at the point P(2,1).

Solution: Since f'(x)=3x>+2>0 for every x, fis increasing and hence is one-to-one.
Thus, f has an inverse function f~'. Since f(1) = 2, it follows that f'(2)=1, and
consequently the point P(2,1) is on the graph of f~'. It would be difficult to find
f "'using Guidelines, because we would have to solve the equation y = x* +2x—1, for x
in terms of y. However, even if we cannot find f ' explicitly, we can find the slope

f 7'(2) of the tangent line to the graph of g at P(2,1). Thus, by Theorem 3.4
f -1 (2) — 11 — 1 — l.
f'(f7 @)y ff'aQ 5
An easy way to remember Corollary 3.5 is to let y = f(x). If f ~'is the inverse function of
f,then f~'(y)= f'(f(X))=X. Then

1 1

Fy(y) = -
O =t5=0) " T

or, in differential notation,

1
dy dy
dx
Example 3 Let f be the function in example 2 then let y=x> +2x—1and x = f ' (y).
Then %z ! = ! ;
dy dy/dx 3x*+2
1 1
That is fYy(y) = = .
(17 3x*+2 3(f7(y)*+2
Or using x

1

3(F'(x)° +2
Consequently, to find (f ~')'(X) it is necessary to know f ~'(X), just as in corollary 3.5.
Exercise 4.2
I Find (f ") (c).

1. fX)=x>+7;¢c=6 2. f(X)=x+sinx;c=0

3. f(X)=x+/x;c=2 4. f(x)=xlInx; c=2e’
Il a) Use f'to prove thatf has an inverse function. b) Find the slope of the tangent line

()00 =

at the point P on the graph of f .

5. f(X)=x"+3x> +2x-1; P(5,)) 6. T(X)=4x>—(1/x’);x>0; P(3,)
111 Find dx/dy
7. f(X)=4-x>, x>0 8. f(X)=In(x’+1)
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4.2.3 Inverse Trigonometric Functions

Since the trigonometric functions are not one-to-one, they do not have inverse functions.
By restricting their domains, however, we may obtain one-to-one functions that have the
same values as the trigonometric functions and that do have inverse over these restricted
domains.

The Arcsine Function
If we restrict the domain of the sine function to [—7 /2,7 /2],then the resulting function
is strictly increasing (because its derivative is positive except —z /2 and z/2.)Hence

the restricted function which is called arcsine function has domain [-1,1], and range
[z /2,7/2]. Tts value at X is usually written arcsin X or sin”'x. As a consequence,

arcsinX =y if and only if siny =X
for —-1<x<land —7z/2<y<x/2
We also see from the property of inverse functions that

I. arcsin(sinX) = x for —z/2<x<7/2 ii. sin(arcsinX) = x for —1<x<1.
Example 1 Evaluate
. .1 (.7 (. S«
a) sin| arcsin— b) arcsin| sin — c) arcsin| sin—
2 4 6
Solution:
. ! | 1
a) sin| arcsin— |=— since —1<—<1
2) 2 2
(.Y T . T T T
b) arcsin| sin— |=— since ——<—<—
( 4} 4 2 4 2

. (. 5« (1 T
¢) arcsin| sin— | = arcsin| — | =—.
( 6 j (2j 6

In Example 1¢) 57 /6 is not between — /2 and 7 /2, and hence we cannot use ii.

Instead we use properties of special angles to first evaluate sin(57/6) and then find
arcsin(1/2).

Example 2 Simplify the expression sec(arcsin \/;)

Solution: We will evaluate sec(arcsin \/;) by evaluating secy for the value of y in

(=7 /2,7 /2) such that arcsin /X = y, thatis, siny = JX. Since sin y = Jx >0, it
follows that 0 <y < /2. Applying the Pythagorean Theorem to the triangle in Fig (3.2)

1

Jx We find secy = ] . Therefore
- X
AN
VI-X sec(arcsin/X) = sec y =
The Arccosine Function vI-x

If the domain of the cosine

one continuous decreasing function that has a continuous decreasing inverse function. We
call the inverse function of cosine arccosine function. The domain of the arccosineis [~
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1,1], and its range is [0, 7].Its value at X is usually written arccosX Or cos” X.Asa
consequence,

arccosx =y if and only if cosy = x

for -1<x<land 0<y<~xz

Since cos and arccos are inverse functions of each other, we obtain the following
properties.

I. arccos(cosX) =x for 0<x<rx ii. cos(arccosX) = x for —1<x<1.
Example 2 Evaluate

a) cos(arccos(—lD b) arccos(cosz—ﬂj C) arccos{cos(—lﬂ
2 3 2

Solution:

1 1 . 1
a) cos| arccos] —— ||=——since —1<—-—<1
2 2 2

2\ 27w . 2z
b) arccos, cosT = EY since 0 < EY <z

ol ) el 35
C) arccos| Cos| —— = arccosf — | =—
4 2 ) 4

Note that in the ¢) part of the preceding Example 2, — 7 /4 is not between 0 and 7, and
hence we cannot use property ii. above. Instead, we first evaluate cos(—z /4) and then find

cos ' (+/2/2).
Example 3 Simplify the expression cos(arctan X).

Solution: Let y = arctanX. Then tany =X and —7/2 <y <z /2. We want to find cosy
but, since tan Y is known, it is easier to find secy first:

sec’y=1+tan>y =1+ x>

secy=v1+x> (as secy>0 for —z/2<y<x/2)

1 1
secy  \1+x?
Note instead of using trigonometric identities as in the solution above, it is easy to use a
triangular diagram. If we let y =arctanXthen tany =X, and using the right triangle

Thus cos(arctanX) =cos 'y =

below we can read from the fig that

1
VX +1 cos(tan™ X) =cosy = .
X I+ x?
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The Arctangent Function
To find an inverse for the tangent function, we restrict the tangent function to
(-7 /2,7/2). The resulting inverse function is called the arctangent function. Its

domain is (-oc,oc), and its range is (—z/2,7/2). We usually write its value at X as
arctan X or tan”' X. As a consequence,

arctanx = y if and only if tany = x

for any x and for —z/2<y<x/2
Thus for any X, arctan X is the number y between — /2 and /2 whose tangent is X.

As with arcsin and arccox, we have the following properties of arctan

I. arctan(tanx) = x for —z/2<x<7/2 ii. tan(arctan X) = X for every Xx.
Example 4
a) tan(arctan 99) = 99

T T
b) arctan(tan—)=—
) ( 4) 2

¢) arctan(tanrz) = arctan0 =0
Example 5 Evaluate sec(arctan$)

Solution: If we let y=arctan$, then tany=3. We wish to find secy. Since

—m/2<arctanXx < 7 /2 for every X and tan 'y > 0, it follows that 0 < y < 7 /2 and from
the triangle below we obtain that
\y 2
V13

sec(arctan %) =secy=——-.

The nometric funct 3 tly and are summarized

here as below:
y=csc' x(X=1) < cscy=x and ye(0,7/2]u(x37/2]
y =sec” X(|X| >1) < secy=x and ye(0,7/2]u(x,37/2]
y=cot"' x(xeR) < coty=x and ye(0,7)
Of these functions only the arcsecant function appears with any frequency in the sequel.

Exercise 4.3
I Find the exact value of the expression, whenever it is defined.

1. arcsin(—x/i /2) 2. arccos(—1/2)
3. arctan(—\/g) 4. sin(arcsin2/3)
5. arcsin(sin57z /4) 6. arccos(cos5z/4)

7. cos[arctan(—3/4) —arcsin(4/5)] 8. tan[arctan(3/4) + arccos(8/17)]
IT Rewrite as an algebraic expression in x for X > 0.
9. sec(arcsin(X/3) 10. tan(arccsc(x/2))
11. cos(2arcsin X) 12. sin(2arcsin X)

Derivatives and Integrals
We know see the derivatives and integrals of the inverse trigonometric functions in the
following two theorems.
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Theorem 3.1

d . 1 d 4 1 d O 1

— X) = — X)=— —(t X) =

i (sin™ X) o i (cos™ X) e X( an~ X) .V
d 4 1 d 4 1 d i 1
— X)=———=— — X) = ——=— —(cot™ X)=—

dx (cse %) xx2 -1  dx (s %) X2 -1 dx (cot ™) 1+ x2
Proof

To proof di(sin_l X) = ,put y=sin"' X so that siny = X whenever —1< x<1
X

1
V1= x?

and —7/2 <y < x/2. Then differentiating sin y = X implicitly, we have

dy
et A
cosy i
and hence ﬂ = i(sin -1 X) = !
dx dx cosy

Since —7/2<Yy<m/2,cosy is positive and, therefore,
cosy :\/l—sin2 y =~1-x.
1
Ji-x*

For |X| < 1. Observe that the inverse sine function is not differentiable at +1.

Thus, i(sin*1 X) =
dx

Since the inverse tangent function is differentiable at every real number, let us consider the
equivalent equation

y =arctanX and tany =X
for —x/2<y<x/2. Differentiating tan y and trigonometric identities we have

d 4 1 1 1 1
—(tan~ X) = =—F—= — = -
dx dtany sec’y l+tan’y 1+X
dy
d 4 1
In other words, —(tan™ X) = .
dx 1+x

The rest of the formulas can be obtained in similar fashion.
Example 1 Find

a) ialr(:sinSX2 b) ialr(:cos(ln X) ¢ ialrctane2X d) iarc sec3x’
dx dx dx dx
Solution: Using Theorem 3.1 along the Chain Rule, we have
a) i(arcsin3x2) = ;i@xz) = .
o 1—(3x2)2 dx 1-9x*
b) iarccos(ln X) = —;i(ln X) = _;
dx J1-(Inx)> dx Xy/1 - (In X)2
2x
c) —arctane® = %i(e“) = %
dx 1+(e™)" dx 1+(e™)
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d) diarCSec3x2= ! i(3x2)= 2
X

(3x%)? —1 dX Xv9x* —1

Each of the formulas in Theorem 3.1 gives rise to an integration formula. The three most
useful of these are given in the following theorem.

Theorem 3.2
i) J.;du = arcsinEJr C

[2 u2 a

u
ii) J‘;dx = —arctan +C
a” +X a

iii) J.4du = larc sec—+ C

uvu? —a?’ a a

The proof of the above example is left as exercise.

Example 2 Evaluate jgdx

v1-eg*

Solution: If we let u=e> so that du=2e’*dx, the integral may be written as in
Theorem (i) as below.

J;d I —— %arcsinu +C =%arcsine2X +C.

dx.

Example 3 Evaluate j
4+ x°

Solution: The integral may be written as in the second formula of Theorem (3.2) by
letting a* = 4 and using the substitution

u=x’, du=23x%dx
and proceed as follows:

x> 1 (du) 1 1
J.4+x6dxz~[4+u2(?j:§~[224+uzdu

= l-larc‘[an£+ C
32 2

= larctanE +C.
6 2

1
Example 4 Evaluate | ———=dx
P '[ xvx* -9
Solution: The integral may be written as in Theorem 3.2(iii) by letting a* =9 and using
the substitution
u=x*  du=2xdx,

we introduce 2X is the integrand by multiplying numerator and denominator by 2x and
then proceed as follows:
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1 1
dx = 2xdx
J.x\/x“—9 J.2x-xw/(x2)2—32
1 1
=— | ———=du
27 yuyu? -3
:l-larCsec£+C
23 3
2
:larCsecX—+C.
6 3
Exercise 3.3
I Find the derivative of the function. Simplify where possible.
1. f(x)=sin"'(2x-1) 2. f(x)=(1+x?)arctan X
3. f(x)=tan'(Xx=+1+x%) 4. f(x)=cos(x™")+(cosX)™" +cos”' X
5. f(x) = (tan x)""*"* 6. f(x)=(tan™' 4x)e""*
IT Evaluate the integral
4
1 cos X
7. 8. | ———=dx
;[X2+16 JA\/9—sin2X

1 1
9. |——dx 10. [———dXx
I\/e“—zs '[«/X(1+x)

4.2.4 Hyperbolic Functions
The exponential expressions

gt —e™* e
and

X X

+e

occur in advanced applications of calculus. Their properties are similar in many ways to
those of sinXand cos X, and they have the same relationship to the hyperbola that the
trigonometric functions have to the circle. For this reason they are collectively called
hyperbolic functions and individually called hyperbolic sine and hyperbolic cosine.
We also define the rest of the hyperbolic functions in terms of these functions.

Definition 3.3

) gt —e™* 1
sinh X = cschx = —
sinh X
e +e™ 1
coshx = sechx =
cosh x
sinh X
tanh X = coth X =
cosh X tanh X

The hyperbolic functions satisfy a number of identities that are analogues of well-known
trigonometric identities. We least some of the as below
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Hyperbolic Identities

sinh(—X) = —sinh X cosh(—X) = cosh x
cosh? x—sinh? x =1 cosh? X+ sinh? X = cosh 2X
sinh 2Xx = 2sinh X cosh X 1—tanh? X = sech?x

sinh(X £ y) = sinh Xcosh y £ cosh Xsinh y

cosh(X £ y) = cosh xcosh y £ sinh Xsinh y

The proof the above identities are left as exercise.
The derivatives of the hyperbolic functions are easily computed. For example,

i(sinhx): dfe—e _& e = cosh X
dx 2 2

dx
We list the differentiation formulas for the hyperbolic functions as below. The remaining
proofs are left as exercises. Note the analogy with the differentiation formulas for

trigonometric
Theorem 3.4
isinh X = cosh X icsc hx = —cschxcoth x
X dx
d ) d
—cosh X = sinh X —sechx = —sechx tanh X
dx dx
d > d >
—tanh X =sech”X —cothx =—-csch”x
dx dx

Example 1 If f(x)=cosh(e™ +x), find f'(x).
Solution: Applying Theorem 3.4, with the chain rule, we obtain
f'(x) = [sinh(e™ + x)]-[(2e** +1)] = (2" +1)sinh(e* + X)

The integration formulas that correspond to the derivative formulas in theorem 3.4 are as
follows.

Theorem 3.5
jsinh Xdx = coshx+C jcosh Xdx =sinh x+C
jsechzxdx=tanhX+C jcschzxdx=—cothX+C
J.sechxtanhX:—sech+C J.cschXcothX:—csch+C

Example 2 Evaluate sz sinh x> dx.

Solution: If we let U = X*, then du = 3x*dx and
sz sinh x*dx = jsinh u(idu)

:lcoshu +C
3

= %cosh x* +C.
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Exercise 3.4
I Find f'(X) if f(X)itthe given expression.

1. e*sinhx 2. cosh(x*)

3. cos(sinh X) 4. e“™ cosh(cosh x)
IT Evaluate the integral

5. Jtanh3Xsec h3xdx 6. Jsinh xsech’dx

7. J.sec hxdx 8. J.tanh xdx

III. Verify the identity.
9. sinh(X—Y) =sinh Xxcosh y —cosh xsinh y

coshx—1

10. sinh? X =
2 2

4.2.5 Inverse Hyperbolic Functions

The hyperbolic sine function is continuous and increasing for every x and hence, has a
continuous, increasing inverse, function, denoted by sinh™'. Since sinh x is defined in
terms of €*, we might expect that sinh ™' can be expressed in terms of the inverse, In, of

the natural exponential function. The first formula of the next theorem shows that this is
the case.

Theorem 3.6
1.sinh ™ x = In(x + Vx> +1) 2.cosh™ x=In(x+vVx*> +1), x>1
| 2
3.tanh_1X=%lni+—X, X|<1 4, sech_IX:lnu,0<Xél
—X X

Proof: To prove (1), let y =sinh™ x. Then
ey —_ efy

X=sinhy = 5

then e’ —2x—-e”’ =0.
Multiplying by e, we have

e”’ —2xe’ -1=0
which is a quadratic equation in €”:
Solving by the quadratic formula, we get

/ 2
eV =wzxidxz +1

Since x—4/x>+1<0 and e’ >0, we must have

ey =x+x*+1.

The equivalent logarithmic form is
y =In(X+vx* +1)
that is, sinh™ X = In(X + /x> +1).

The proofs of the formulas 2-4 in theorem 3.6 are left as exercise.
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The inverse hyperbolic functions are all differentiable because the hyperbolic functions are
differentiable. The formulas in theorem 3.7 below can be proved by the method for inverse
functions or by differentiating the formulas in theorem 3.6.

Theorem 3.7

d 1 d 1
1. —(sinh ™" x) = 2. —(csch™X) = ———=
dx 1+ X dx XWX +1
d 1 d 1
3. —(cosh™ x) = x> 1 4, —(sech™X)=————,0<x<1
x| : x* -1 x| . xv/1- x>
d 1 d
5.—(tanh ' x)=—— | x|< 1 6. —(coth™ x) =
dx( ) 1-x? [ X] dx( ) 1—x?

Proof: To proof (1) let y =sinh™" x. Then sinh y = X and % =coshy. Since coshy >0
y

and cosh’ y —sinh® y =1, we have cosh y = /1 +sinh® y . Then applying the method for
inverse functions, we have

dy d .. 1 1 1 1

—=—¢(inh™ X)=—= = = .

dx dx dx  coshy \/1+sinh2y N
dy

Observe that we could have done the proof (1) by using formula (1) of Theorem 3.6 as
below.

i(sinh_l X) = iln(X +Ux2+1)
dx dx

1 X
= |14+ —
x+\/x2+1( \/x2+lJ
VX2 +14+X 1

) X+ X2+ DX +1 ) N

Example 1 Find disinh‘1 (tan X).
X

Solution: Using Theorem 3.7 and the Chain rule, we have

isinh‘1 (tanX) = ;itan X= ;secz X
dx Vtan? x +1 dX Vsec” X

1 2
= 3 sec” X =|S€C X|.
‘SCC X‘
1/2 1
Example 2 Evaluate l—zdx.
—X

0
Solution: Referring to Theorem 3.7 we can see that the antiderivative of 1/1—x’ is
tanh ™' x. Therefore
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1/2

1 1/2
——dx = tanh™ x‘
I-x 0

1 1+ X
=—In| —
2 (l—xj

1/2

Exercise 3.5
I Find f'(Xx) if f(X) is the given expression.

1. sinh™" 5x 2. +Jcosh™ x

3. Xtanh™' X + In+/1- x> 4. sech™VJ1-x*,x>0

IT Evaluate the integral

5. jsinh2xdx 6. Jﬂdx
1+ cosh x
e* sin X
7. | — 8. | ——dx
J.\/ex—16 '[«/1+coszx

III Prove that the formulas 2,3, and 4 in Theorem 3.6.

4.2.6 L‘'Hopital’s Rule

While we study limits in the previous course of calculus we considered limits of quotients
such as

2 .
. X" =4 . sinX
lim and lim
x>-2 X 42 x=0 X
and calculated the limits by using algebraic, geometric, and trigonometric methods even
if the limits have the undefined form 0/0. In this section we develop another technique

that employs the derivatives of the numerator and denominator of the quotient. This new
technique is called L*Hopital’s rule. For the proof of this rule we need the following
generalization of the Mean Value Theorem.

Theorem 4.1 (Cauchy’s formula)

If f and g are continuous on [a,b] and differentiable on (a,b) and if g'(x) # 0 for every X in

(a,b), then there is a number c in (a,b) such that
fb)-f(@ _ f'(c)
gb)y-g(@ f'(c)
Proof: We first note that g(b)—g(a) # 0, because otherwise g(a)=g(b) and, by Rolle’s
Theorem, there is a number ¢ is (a,b) such that g'(c) =0, contrary to our assumption
about Q'.
Let us introduce a new function h as follows:

h(x) =[f(b) - f(a)lg(x)-[g(b) - g(@)]f (x)
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for ever x in [a,b]. It follows that h is continuous on [a,b] and differentiable on (a,b) and
that h(a) = h(b). By Rolle’s Theorem, there is a number c in (a,b) such that h'(c) = 0; that
is,

[f(b)-f(@)]g'(c)-[9(b)-g(a)]f'(c)=0.
This is equivalent to Cauchy’s formula.
The Indeterminate Form 0/0
If lim f(x)=0= 11m g(x), then we say that hm f(X)/g(x) has the indeterminate

x—a*

form 0/0. The same notlon applies if hm is replaced by lim,lim, lim, or lim. The

x—>b’ X—C X—>00 X—>—0
limits
im "% and  fim S
x>-2 X+ 2 x>0 X
therefore have the indeterminate form 0/0. Our first version of L‘Hopital’s rule is
concerning the indeterminate form 0/0.
Theorem 4.2 (L*Hopital’s rule)
Let L be a real number or o or —o
a. Suppose fand g are differentiable on (a,b) and g'(x) # 0 for a < x <b. If
lim f(x)=0= lim g(x) and lim ARG =L
x—a* x—a* x—a* g'(x)

then

lim oo L < lim '
o2 g e g'(X)

An analogous result holds if lim is replaced by hm or by lim, where ¢ is any number in

(a,b). In the letter case f and g need not be dlfferentlable at c.
b. Suppose f and g are differentiable on (a,%) and g'(X) # 0 for x> a.If

lim f(x)=0= hm g(x) and limw =L
X—>00 x—0 (X)

then

T KGO NETN C))

g0 on g0
An analogous result holds if lim is replaced by hm

Proof: We establish the formula involving the r1ght-hand limits in (a). Define F and G on
[a,b) by
f(x) for a<x<b
F(X)=

0 for x=D0
G(x) = g(x) fora<x<b
0 for x=a

Then
lirq F(x)= lim+ f(x)=0=F(a)
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so that F is continuous [a,b). The same is true of G. Moreover, F and G are differentiable
on (a,b), since they agree with f and g, respectively, on (a,b). Consequently if x is any
number in (a,b), the F and G are continuous on [a,x] and differentiable on (a,x). By the
Generalized Mean Value Theorem, this means that there is a number c(x) in (a,x) such
that

F) _FX-F(@) _ F'cx)
G(x) G(x)-G(a) G'(c(x))
Because F = f and G =g on (a,b), this means that
F(x) _ ')
g(x)  g'(c(x))
Since a < ¢(X) < X, we know that
lim ¢(x) =a

so we can use the Substitution Theorem with y = c¢(x) to conclude that

tim ) _ fiy LCEOD _j TO) _ gy OOy

oat g(x) et gl(e(x)) v gi(y) e g'(X)
This proves the equation involving right-hand limit in (a). The results involving left-hand
and two-sided limits are proved analogously. Part (b) is more difficult to prove, and we
omit its proof.

X

Example 1 Evaluate lin01
X—> X

Solution: Both the numerator and the denominator have the limit 0 as x — 0. Hence the
quotient has the indeterminate form 0/0 at x = 0. By LHopital’s rule

liml_3 zlim_3 ln3:—ln3
X—0 X X—0
ln(l—Xz)

Example 2 Evaluate lim
x>0 Incos2X

Solution: Observe that
lirrolln(l -x*)=0= lirr(}ln cos 2X
thus by applying L‘Hopital’s rule we get
—2X
— 2 2 —
limln(l X): 1-X>  _fim 1 2X
x>0 Incos2X —2tan2x x>0\ 1—x> —2tan2X

. X . .
=lim , since lim =1
x=0 tan 2X x=0 ] — x*
. X
= lim| — -(cos2X)
x>0 8in 2X

= lim— -lim(cos X) = 1
x—=0 g1n 2X x—0 2

Example 3 Evaluate lim (7/2) 1—/arctan X .
X—0 X
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Solution: Since limarctan X = 7z /2, we have

X—0

lim[Z —arctan Xj =0= liml

x—>o\ D X—® X
Hence by L‘Hopital’s rule we have
(r/2)—arctanx . —-1/1+x*) . X’

lim =lim > = lim 2:1.
X 1/x x>x  —1/X x> ]+ X

In same limits we need to apply L‘Hopital’s rule several times in succession. The next
example is one.

e¥ —e ™ —2x
Example 4 Evaluate lim——
x>0 2X —sin 2X

Solution: The given quotient has the indeterminate form 0/0. By L‘Hopital’s rule we have
ef—-e " -2x . e'+e"-2
lm———=lm———
x>0 2X —sin2X  x20 2—-2c0s2X
provided the second limit exists. Because the last quotient has the indeterminate form 0/0,
we apply L‘Hopital’s rule again, to obtain
e*+e -2 . e'-e”
im———— = lim—
x>0 2 —2cos2X x>0 4sin 2X
still the last quotient has the indeterminate form 0/0, hence applying the L‘Hopital’s rule
for third time we get
. et—e™ . ef4e™ 2
Im——=lm—=—=
x>0 4s5in2X x>0 8cos2X 8
The Indeterminate Form oo/co
Our second version of LHopital’s rule involves limits with indeterminate form oo/c0. We
give it now, with out proof.
Theorem 4.3 (L*Hopital’s rule)
Let L be a real number or «o Or —o

a. Suppose f and g are differentiable on (a,b) and g'(x) =0 for a < x <b. If

lim f(x) =00 or —o, 11m g(X)=o or —oo, and lim f EX;
x—a* x—a* g X

1
T

then

lim + 0 _ | = i T
x—a* g()() x—a' (X)
An analogous result holds if lim is replaced by 11m or by hm where ¢ is any number in

(a,b). In the letter case f and g need not be dlfferentlable at c.
b. Suppose f and g are differentiable on (a,%) and g'(X) # 0 for x >a.If

hmf(x) o Or — oo, hmg(x) 0 or —oo, and lim——= Feo =L

X—>00 g (X)
then
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lim 00 _ | fjm - )
X—>0 g(x) X—>00 g (X)
An analogous result holds if lim is replaced by lim .

X—0 X—>—00

. 4tan X
Evaluate 5 Evaluate lim ——.
x—>(7/2)" 1 +sec X

Solution: Observe that the limit has the indeterminate form oo/co. Then by L‘Hopital’s
rule we have

. 4 tan X . 4sec’ X . 4secx
Im ——= lim — = Ilim .
x=>(z/2)” I +secX x-(z/2) secXtan X x—-(z/2) tan X

The last quotient again has the indeterminate form oo/oo at X = 77 /2; however, additional

applications of L‘Hopital’s rule always produce the form oo/co. In this case the limit may
be found by using trigonometric identities to change the quotient as follows:
d4secx  4/cosX 4

tanX  sinX/cosX sinX
Consequently
) 4tan X . 4 4
lim —= lim —=—=4.
x—>(z/2)" 1+secX x-/2)”sinX 1
2X

. €
Example 6 Evaluate lim—-.
X—>00 X

Solution: Since the limit has the indeterminate form co/o0 by applying L‘Hopital’s rule

we have
) 2X ) 2e2x ) e2x
hm—2 =lim = lim—.
x—0 ¥ X—>0 2X x—ow X

The last quotient has the indeterminate form /o0, so we apply L‘Hopital’s rule for a
second time, to obtain

e 2e™
Iim— =1lim
X=X X—>00 1

Particularly in a similar fashion we can show that

= 00,

X

. e
lim— =0 forevery real number n.

X—0 ¥

Other Indeterminate Forms
Various indeterminate forms, such as 0-00,0°,17,00°, and ©o—oo, can usually be

converted into the indeterminate form 0/0 or oo/o and then evaluated by one of the
versions of L‘Hopital’s rule given in Theorem 4.2 and 4.3.

Example 7 Find lim x> In x

x—0*

Solution: Since lim x> =0 and limlnx=-o0 the given limit is of the form

x—0" x—0"
0 - oo (more precisely, 0-(—)). However, we can transform it into the indeterminate form
oo/oo by writing it as
. Inx
lim
x—=0" 1/ X2
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and apply the L*Hopital’s rule we get

lim x> InX = lim 1nX2 = lim 1/X3.
x—0* x>0 1/ X x=>0" — 2 /X

The last quotient has the indeterminate form oo/oo; however, further application of
L‘Hopital’s rule would again lead to /0. In this case we simplify the quotient

algebraically and find the limit as follows:

1/x & NG

lim - = lim = lim —=0.
x—0" —2 /X x20" —2X  xo0" —2

Example 8 Find lim x*.

x—0*"

XIn X

Solution: The limit evidently has the indeterminate form0°. But then since x* =€
and consequently

lim x* = lim e*™*,

x—0" x—0"
Since the exponential function is continuous, it follows that
. I x lim (xInXx)
lime™™* =ex°
x—0"

it the limit on the right side exists. But since

tim xIn x = 1im 2% = 1im %) _ i< 0
x—0* x=>0" 1/ X x>0 (=1/x7) x>0

by L‘Hopital’s rule,

XIn X

lim x* = lime*™* =¢® =1.

x—>0* x—>0*

X—>0 X

Example 9 Show that lim[l +lj =e

Solution: Observe that the limit has the indeterminate form 1. As in example 8, since

X In 1+l ' X
(1 + lj =e ( Xj first let us evaluate lim ln(l + lj . But in doing so we have
X X—00 X

fimin[ 14| = timxtn 142 | = [jm 200
X—>00 X X—>00 X X—>00 1/ X

This expression is now prepared for L*Hopital’s rule as the limit has 0/0 form. As a result

s <)
A1/l 2
im0 AHO8 Xy L

> = =1.
xoo 1/ X x>0 —1/x x>0 ] +1/X
Thus
x mf1:1)
llm(l+lj =lime [ Xj =e’ =1
X—o0 X X—o0

x>0\ e* -1 X
Solution: The limit has the indeterminate formoo—oco; however; if the difference is
written as a single fraction, then

Example 10 Find lim( ! —l)

Prepared by Tibebe-selassie T/mariam 86



-0t e* =1 X x—>0" xe* —x
This gives us the indeterminate form 0/0. It is necessary to apply L‘Hopital’s rule twice,
since the first application leads to the indeterminate form 0/0. Thus,

) 1 1 .o Xx—e"+1
hm( ——j =lim——.

.o X—ef+1 1-e*
Iim———=lim——
x>0" xg¥ —x  x->0" xe* +e* —1
) —e* 1
= lim =——
x-0" xg* +2e* 2
Exercise
I Find the limit
oxf =1 X" =1 . sinx—X
1. im 7 2. lim 3. hmsm—3
x—>-1x* —1 x->1 x" —1 Xx—0 X
. -1
4. limS%naX 5. lim tanl/x 6. lim—tan (2X)
x-0 sin bx x>0 /X X0 3X
e —1=x—=(x*/2 . .
7. hnge 3 (x'/2) 8. lim xe* 9. lim(x—+/x*—1)
X—> X X—>—00 X—>0
. . Y : 1
10. llm(1+§+%J 11. llm(l——) 12. lim Xz(l—Xsm—j
X—>00 X X X—>00 X X—>00 3
13, lim| ———— 14. lim (tan x)™*** 15. lim Lz— , 12
I Inx x-=1 X—or/4 x>0\ X sm- X

16. Why is the following “application” of L*Hdpital’s rule invalid?
1 . sinX . COSX

= lim = lim =0
/2 xor/2 X xor/2 ]

.1 p.
17. Evaluate llm—3'[51n(t2)dt.
X—=0 ¥ 0

4.3 Implicit Differentiation Problems

The following problems require the use of implicit differentiation. Implicit differentiation is
nothing more than a special case of the well-known chain rule for derivatives. The majority
of differentiation problems in first-year calculus involve functions y written EXPLICITLY as
functions of X . For example, if

y = 3z* —sinfTz + 5)

then the derivative of y is

Yy = bz — Teos[Ta + B)

However, some functions y are written IMPLICITLY as functions of X . A familiar example
of this is the equation

X +y? =25,
which represents a circle of radius five centered at the origin. Suppose that we wish to find
the slope of the line tangent to the graph of this equation at the point (3, -4) .
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(3, -4)

.

How could we find the derivative of y in this instance ? One way is to first write y explicitly
as a function of X . Thus,

X +y* =25,

Yy =25-x%,

= /30— &2

where the positive square root represents the top semi-circle and the negative square root
represents the bottom semi-circle. Since the point (3, -4) lies on the bottom semi-circle given

and

by
Y = 1,.-""25 ; E
the derivative of y is ,
f -_ , - - Iﬁ — ] ;_
Y [172)(3 — &%) (—2=) oy

b
ie.,
" o

¥ =

Thus, the slope of the line tangent to the graph at the point (3, -4) is

Véd = i

Unfortunately, not every equation involving X and y can be solved explicitly for y . For the
sake of illustration we will find the derivative of y WITHOUT writing Yy explicitly as a
function of X . Recall that the derivative (D) of a function of x squared, (f(X))*, can be found
using the chain rule :

D{(f(=))"} = 2f(z) D{f(z)} = 2fi=x)f*(z)

Since y symbolically represents a function of X, the derivative of y* can be found in the same
fashion :
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D{y*} = 2y D{y} = 2w/

Now begin with x* + y* = 25 . Differentiate both sides of the equation, getting
D(X*+y*)=D(25),
D(xX*)+D(y*)=D(25),

and
2X+2yy =0,
so that
2yy,:-2xa
and
_—— @
G — i —
2y ¥
1e.,
, —iE
v u

Thus, the slope of the line tangent to the graph at the point (3, -4) is

-3 _3
YT T a

This second method illustrates the process of implicit differentiation. It is important to note

that the derivative expression for explicit differentiation involves X only, while the derivative

expression for implicit differentiation may involve BOTH X AND Yy .
The following problems range in difficulty from average to challenging.
Example 1 Assume that y is a function of X . Find y* = dy/dx for x> +y* =4 .
SOLUTION: Begin with X’ + y* = 4 . Differentiate both sides of the equation, getting
D(X+y)=D(4),
D(X)+D(y')=D(4),
(Remember to use the chain rule on D (y*).)
3x*+3y*y’ =0,
so that (Now solve fory’ .)
Yy =-3x,
and

=32 -

3

Exercise 2 Assume that y is a function of X . Find y* = dy/dx for (x-y)*=x+y- 1.

¥ =

SOLUTION: Begin with (x-y)*=x +y - 1 . Differentiate both sides of the equation, getting

D(x-y=D(x+y-1),
D (xy)’=D(x)+D(y)-D(1),
(Remember to use the chain rule on D (x-y)*.)

e —w) Pz —gl=14+¢ -0
20ey) (1Y) =14y,

2(xy) -2y =1+y’,
-2 Y -y =1-2(xy),

so that (Now solve fory’ .)
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(Factor out y’ .)

Y[-2(xy)-1]1=1-2(xy),
and
l-2fp-y) _Jy-—2qw+4l
—dfp =) =1 Fy—2w-1l

¥ -

y = sinfd=s + 4g)
Example 3 Assume thaty is a function of X . Find y’ = dy/dx for .
¥ = sin(dx 4 dy)
SOLUTION: Begin with . Differentiate both sides of the equation,

getting
Diy) = D{sin{a + 431)
Disin(3a +45)) ’

(Remember to use the chain rule on

¥ = cos(3z + 49) D(3z + 4y)

¥ = cos(3m + 4y)(3 +4¢)

b

so that (Now solve fory’ .)
¥ = dcos(3a 4+ 4y) + 4¥ cos{iz + 4y)

¥ — 4y cos(dx + dy) = Fcos{ds + dy) ,

9

(Factor outy’ .)
¥ (1~ dcos{3z + 4y]] = Jcos{da + 4y)

and
¢ o dcos(3x + dy)
1 = 4 cos{3= + dy)

Example 4 Assume that y is a function of x . Find y’ = dy/dx fory =x*y> + X’ y* .
SOLUTION: Begin with y =x*y* + x> y* . Differentiate both sides of the equation, getting
Dy)=D (¥*y’+xy*),
Dy)=D(xX*y")+D(Xy*),
(Use the product rule twice.)

¥ = {=*D{y’) + D{z"}"} + {z*D(*) + D(=")"}
(Remember to use the chain rule on D (y* ) and D (y*).) ’
¥ = {=*(3"%) + (25)"} + {=* (2w} + (3s")*}
Y =3y Y 22Xy + 2 yy + 3%y, ,
so that (Now solve fory’ .)
Y -3V Y -2y Y =2x Y 43X Y2

(Factor out 'y’ .)
Y [1-3Cy -2y ]=2xy’ +3x°y?,
and
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_ eyt + 32%y®
¥ =1 — 322y _ Tady

PROBLEM 5 Assume that y is a function of x . Find y’ = dy/dx for &¥ = e* + ™.
SOLUTION: Begin with €¥ = e™ - " . Differentiate both sides of the equation, getting
DEY)=D(e*+eV),
D(e”)=D (e*)+D(e”),
eYD(xy)=e¥*D (4x)+e” D(5y),
&Y (xy +()y)=e¥(4)+e”(5y),
so that (Now solve fory’ .)

xeVy +yeY=4e"+5eVy,

xeVy -5eVy =4e¥-yeY,
(Factor outy’ .)

Yy [xe¥-5eY]=4e*-yeY,

and
= A g
B — JE®
Example 6 Assume that y is a function of x . Find y* = dy/dx for

cos® o + cos®y = cos{Zx + 2y)

cos® 2 4 cos® ¥ = cos{dzx + 2y}
SOLUTION: Begin with . Differentiate both sides of the
equation, getting

Dcos® 2 4+ cos® y) = D{cos(2z + 2y))
Dleos®z) + Dicos® ) = Dfcos{2z + lyi-}
(Zeos o) Pcosz) 4+ (2 cosy)ENeos y) = —sinf2z 4 29-}}:2-(2; + 2y)

2eos xf— sinz) + L eosy{ — sing)(y’) = — sin(Zx < 2p)(2 + 3y') ,

so that (Now solve fory’ .)
Zeosesing — Iy cospsiny = —2sinf2s + 2y) — 2y sinf 2z + 2y)

Zy' sin{ 2z 4 2y) — 2y cosysing = —2sin{2x + 2y) + Zcoscsinc

(Factor out 'y’ .)
¥ [2sin(2z + 2y) — 2cosysing] = 2cosz sins — sin(2Zs + 2y)

2

¥ = 2eoszsing — Isinfdz + Zy)
2sin{2z + 2y) ~ Zcosysiny

o = E[ma-sinm:- sin{2z + Iy ’
~ 2sinf2z + Zy) — cospsin y|

9

and
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cos®sing — siof 2z + 3y
sinf2z 4 Jy) —cosysiny

y -

Example 7 Assume that y is a function of X . Find y’ = dy/dx for x=+/x"+Yy*.
SOLUTION: Begin with X = /x* + y* . Differentiate both sides of the equation, getting

Diz) = D /7% + g°)

1=(12)(C+y Y2 D (@ +y*),
1=12)(¢+y )2 (2x+2yy),
so that (Now solve fory’ .)
I COIOCES )

ya 4

i

1= S,
3 e

ﬁfTE'g‘E-E{yy!

b

YA g - gy

and

3
X y2 =X+2.

Y+ X

Exercise 8: Assume that y is a function of x . Find y’ = dy/dx for

3

SOLUTION: Begin with X2y _ X+ 2. Clear the fraction by multiplying both sides of

2

Y+ X
the equation by y + X* , getting
X — 3
y2 (Y+X)=X+2(y +Xx%)
Y+ X
or X-y =xy+2y+x°+2x%.

Now differentiate both sides of the equation, getting

D(x-y)=D(xy+2y+x +2x),

D(x)-D(y’)=D(xy)+D(2y)+D(X)+D(2¢),
(Remember to use the chain rule on D (y* ) .)
1-3y2y =(xy’ +(1)y)+2y +3x +4x,

so that (Now solve fory’ .)

1-y-3x-4x=3y’y +xy"+2V’,
(Factor out y’ .)

1-y-3-4x=By*+x+2)y’,

and
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1—y—32*—d=

¥ = [ ETE

Class Work
PROBLEM 9 : Assume that y is a function of X . Find y’ = dy/dx for l3+i3 =x’y*.
Xy

Example 10 Find an equation of the line tangent to the graph of (X*+y*)’ = 8x°y* at the
point (-1, 1) .
SOLUTION Begin with (xX*+y?)® = 8x%* . Now differentiate both sides of the equation,
getting
D (X*+y)’ =D (8x’y*),
3 (HY?)’ D (X*H+y?) =8 D (y*) + D (8x*) ¥,
(Remember to use the chain rule on D (y*) .)
30CH) (2x+2yy ) =8¢ 2yy ) +(16X)y?,
so that (Now solve fory’ .)
6X (Y + 6y K+ Y =16 Xy Yy + 16 X Y2,
6y (Y)Y - 16 X7y Y = 16 X y* - 6X (X*+y")°
(Factor outy’ .)
Y [6Y (YD) - 16 X2y =16 X y* - 6x (X*+y%)?,
and
162y” — Gx(z® 4+ ¥°F
By(z® + g2t — 16z2y

¥ =

Thus, the slope of the line tangent to the graph at the point (-1, 1) is

_ g = (L))" — 6(-1)((-1)"+ il}tliﬂ _8_,
6(1)((-1)% + (12 — 16{-1)?(1) &

and the equation of the tangent line is

y-(1)=@(x-(-1))

y=x+2
Example 11 Find an equation of the line tangent to the graph of X* + (y-x)* = 9 at x=1.
SOLUTION: Begin with x* + (y-x)’ =9 . If x=1, then
(1 +(y-1) =9

(y-1)'=
y-1 2 ,
y=3,
and the tangent line passes through the point (1, 3) . Now differentiate both sides of the
original equation, getting

or

so that

D(X*+(yx’)=D(9),
D(x*)+D(yx’=D(9),
2x+3(yx’D(y-x)=0,
2x+3(yx’ (y-1)=0,
so that (Now solve fory’ .)
2X+ 3 (y-X)2y’- 3 (y-X)*=0
37y =3 (y-%)’ - 2x,
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and
My -z -
- Yy -ap

Thus, the slope of the line tangent to the graph at (1, 3) is

o, _s-1*-2(1) 10 5
MY ST moE 126

¥

and the equation of the tangent line is

y-(3)=06/6)(x-(1)),

y = (7/6) x + (13/6) .
Finally let us see how to find the second derivative of a function that is defined
implicitly.
Example 12 Find y" if x*+y* =25
Solution: Differentiating the equation implicitly with respect to x, we get

or

4> +4y°y'=0
solving for y’gives
X3
y'= R (1

To find y" we differentiate this expression for y' using the quotient rule and remembering
that y is a function of x:

o 4 (X)) _y'Pe) - XDy
x|y’ (v
y'.3x* - x’(3y’y")
- .

If we now substitute Equation 1 into this expression we get

3
3x2y? _3X3y2(_y)§ ]

yH: y6
O30y +x%) 0 3x(yt+xt)
- y7 - y7
But the values of x and y must satisfy the original equation x* +y* =25. So that answer
3% (25 X’
simplifiesto  y"= —# =-75—
y y

Class Work
1. Find the slope and concavity of the graph of X’y + y* =4 + 2x at the point (-1, 1) .
2.Consider the equation X* + Xy + y* = 1 . Find equations for y’ and y” in terms of x and y

3.Find all points (X, Y) on the graph of X3 + y2/ 3 = 8 (See diagram.) where lines tangent to
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the graph at (X, y) have slope -1 .

Y

4.Find y"by implicit differentiation.

a. X +y =1
b. X*+6xy+y’ =8

c. \/;+\/V:1.

4.4 Application of the derivative

4.4.1 Extrema of afunction

Definition 1 A function f has an absolute maximum at ¢ if fO> f(x) for all x in D, where
D is the domain of f. The number fO is called the maximum value of f on D. Similarly, f
has an absolute minimum at c if fO < f(x) for all x in D and the number f© is called the
minimum value of f on D. The maximum and minimum values of are called the extreme
values of f.

Definition 2 A function f has a local maximum (or relative maximum) at ¢ if there is an
open interval I containing ¢ such that fO> f(x) for all x in I. Similarly, f has a local
minimum at c if there is an open interval I containing ¢ such that fO© < f(x) for all x in .

Example 1 If f(x) = x%, then f(x) > f(0) because x*> 0 for all x. therefore f(0) = 0 is the
absolute (and local) minimum value of f. this corresponds to the fact that the origin is that
lowest point on the parabola y = x*. However, there is no highest point on the parabola
and so this function has no maximum value.
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Example 2 From the graph of the function f(x) = x’ we see that this function has neither
an absolute maximum value nor an absolute minimum value. In fact, it has no local
extreme values either.

Theorem 3 If f has a relative (local) extremum (that is, maximum or minimum) at ¢, and
that f'(C) exists, then f'(c)=0.

Definition 4 A number c in the domain of a function fis a critical number of f if either
f'(c)=0 or f'(c) does not exist.

3/5 815

Example 3 Find the critical numbers of f f (X) = 4X X

Solution The derivative of f'is given by
' 12 55 8 35 128X

f'(x) 5 X 5 X 525
Therefore f'(c)=0 if 12-8x = 0, that is, x = 3/2 and f'(X) does not exist when x =0.
Thus the critical numbers are 3/2 and 0./
To find the absolute extreme value of a function on a closed interval a similar theorem to
Theorem 3 is given bellow.
Maximum-Minimum Theorem
Theorem 5 Let f be continuous on a closed interval [a, b]. Then f has a maximum and a
minimum value on [a, b].
Note that according to Maximum-Minimum Theorem an extreme value can be taken on
more than once.
The following Theorem will simplify our effort of searching for an extreme value on a
closed interval.
Theorem 6 Let f be defined on [a, b]. If an absolute extreme value of f on [a, b] occurs at
a number c in (a, b) at which f has a derivative, then f'(c)=0.
In using theorem 5 to find the extreme value we followthe three-step procedure bellow.

1. Find the values of f at the critical numbers of f in (a,b)

2. Find the values of f(a) and f(b).

3. The largest of the values from steps 1 and 2 is the absolute maximum value; the

smallest of these values is the absolute minimum value.
Example 4 Find the absolute maximum and minimum values of the function
f()=x"-3x>+2 1<x<3
Solution: Since f is continuous on [-%2,3], we can use the procedure outlined above:
Since
f'(X) =3%x” —6X = 3X(X-2)
Since f'(X)exists for all x, the only critical numbers of f occur when f'(x) =0, thatis, x =
0 or x = 2. Notice that each of these critical numbers lies in the interval [-/2,3]. The values of
f at these critical numbers are
f(0)=2f(2)=-3
The values of f at the endpoints of the interval are
f-h=4 13)==2

Comparing these four numbers, we see that the absolute maximum value is f(0)=f(3)=2
and the absolute minimum value is f(2) = 2.
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Class Work
1. Find the critical numbers of each function a)

1
f(x) = x> 6x +1 b) fx)=lx|  c) cosv/x  d) f(x)=
Vx* +1

2. Find all extreme values (if any) of the given function on the given interval. Determine
at which numbers in the interval these values occur. a)
f(x)=x* —2x + 2, [0,3] b) f(x)=x*+2/x, [1/2,2] ¢) f(x)=x*" [-8,8].

3. Show that 0 is a critical number of the function f(x) =x’ but f does not have a local
extremum at 0.

4. Prove that the function f(x) = x>' + x*'+x-+1 has neither a local maximum nor a local
minimum.

4.4.2 The Mean Value Theorem

Theorem 6 Let f be continuous on [a, b] and differentiable on (a, b). Then there is a

number c in (a,b) such that
f(b)-f(a)

b-a
or, equivalently,
f(b)y—f(a)=f'(c)(b—a).

Example 5 Let f(x)=x’—-8x+5. Find a number c in (0,3) that satisfies the Mean

Value Theorem.
Solution Since fis continuous on [0,3] and f'(c) should satisfy the condition

f3)-f(0) _8-5_

f'(c)=

f'(c) = 1
3-0 3
we seek a number c in (0,3) such that f'(c) =1. But
f'(x)=3x>-8

so that ¢ must satisfy
3¢’ -8 =1

c=+3

Since —+/3 ¢ (0,3), the value of ¢ that satisfies the mean value theorem in the interval

(093) is \/g .
Class Work
1. Verify that the function bellow satisfies the hypothesis of the Mean Value Theorem
on the given interval. Then find all numbers c that satisfy the conclusion of the Mean
Value Theorem.

a) f(x)=1 -, [0, 3] b) f(x):3[x+lj,[§,3] o) f(x)=+/%,[1,4]

X
2. Let f(x)=[x-1|. Show that there is no value of ¢ such that f(3)-f(0)=f"©(3-0). Why
does this not contradict the Mean Value Theorem?
Show that the equation x*+10x+3=0 has exactly one real root.
4. Show that the equation x*+4x+c=0 has at most two real roots.

W
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4.4.3 First and Second Derivative Tests; Curve sketching

I hope you remember that a function that is increasing or decreasing on an interval [
is called monotonic on I and we used the test stated in the theorem bellow to identify
whether a function is monotonic or not on a given interval.

Theorem 7 Suppose f'is continuous on [a,b] and differentiable on (a,b).

a) If f'(x)> 0 forall x in (a,b), then f is increasing on [a,b].

b) If f'(X) < Oforall x in (a,b), then fis decreasing on [a,b].
Theorem 7 lays the bases for the proof of the first derivative test stated as follows.
Theorem 8 (The first derivative test)
Suppose that c is a critical number of a continuous function f.

a) If f' changes from positive to negative at c, then f has a local maximum at c.

b) If f' changes from negative to positive at c, then f has a local minimum at c.
¢) If f' does not change sign at ¢ (that is, f'is positive on both sides of ¢ or negative
on both sides), then f has no local extremum at c.
Example 6 Find the local extrema of x'"*(8 — x) and sketch its graph.
Solution By the product rule we have
f'(x) = %X72/3(8 —X)— x!/3
_8—x-3x 42-Xx)
- 3x2/3 - 3x2/3
The derivative f'(Xx)=0when x =2 more over f'(x) does not exist when x = 0. So the

critical numbers are 0 and 2.
Bellow we give the sign chart for f'(x).

0 2
4(2-x) + + -
3y23 N N N
f'(x) + + _
f f is increasing f is increasing f is decreasing

Then the function does not have an extreme value at 0. Since f' does not change sign at
0. But f has a local maximum at 2 since f' changes sign from positive to negative and

the local maximum value is given by f(2)=21/ (8 -2)= 61/2. Then using the sign chart and
the extreme value we sketch the graph as bellow.
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Class Work

If f(x)=x*’(x*-8), find the local extrema, and sketch the graph of f.

As the first derivative is useful to sketch the graph of a function the second derivative

gives also additional information that enables us to sketch a better picture of the graph.

The tests that we give below involve second derivative the student can consult advanced

books for there proofs.

Theorem 9 (The Test For Concavity) Suppose f'is twice differentiable on an interval 1.
a) If f"(x)> 0 forall x in I, then the graph of fis concave upward on I.

b) If f"(x)<O0 forall x in I, then the graph of f is concave downward on 1.
Definition 10 A point (a,b) on a curve is called a point of inflection if the curve changes
from concave upward to concave downward or from concave downward to concave upward
at (a,b).
Example 7 Determine where the curve y = X° —3X+1 is concave upward and where it is
concave downward. Find the inflection points and sketch the curve.
Solution If f(x)=x’-3x+1, then
f'(x)=3x>=3=3(x"-1)
Since f'(x)=0 when x* = 1, the critical numbers are +1. Also
f'x)<0 o xX*-1<0 & x* <1 & |x<1
f'X)<0 < x*<1 < x>1 or x<-1

Therefore f is increasing on the interval (-0, -1] and [1,0) and is decreasing on [-1,1]. By
the first derivative test, f(-1) = 3 is local maximum value and f(1) = -1 is a local minimum
value.
To determine the concavity we compute the second derivative:
f"(x) =6x
Thus f"(x) >0 when x>0 and f"(x) <0 when x<0. The Test for concavity then tells us

that the curve is concave downward on (-o0, 0) and concave upward on (0, «). Since the
curve changes from concave downward to concave upward when x = 0, the point (0, 1) is
a point of inflection. We use this information to sketch the curve in Fig below.

: : \ : |
-4 - oN_/ 2 4

f(x) = X = 3x+ 1

|
(o))

|

T
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Another Application of the second derivative is in finding maximum and minimum
values of a function.
Theorem 11 Suppose f"is continuous on an open interval of a function.

a) If f'(x)=0and f"(c)> 0, then f has a local minimum at c.
b) If f'(X)=0and f"(c) <0, then f has a local maximum at c.

EXAMPLE

Use the Second Derivative Test to find relative extrema of

f(x)=3~x4+ 8-X3+ 4.

Solution

1 J— 3 2
f'(x)=12x" + 24X Find critical numbers of f.

= 12-x2-(x+ 2) (Note that the Second Derivative

o Test can only be applied at critical
Critical numbers: x =0, x=-2 .\ mbars where f '=0.)

Find f"".
Evaluate f ** at the critical
numbers where ' =0.

f"(x) =36X + 48X

f"(-2)=48>0 Relative minimum

£f"(0)=0 The Second Derivative Test
fails in this case.

In the last case, x = 0 could still be a relative maximum, relative minimur
or neither; but the Second Derivative Test fails to produce any useful
information.

If you used the First Derivative Test, you would find out that x = 0 is not
relative extremum (there is an inflection point there instead).

The graph on the right 40T
illustrates these findings.
20T
4 o3 /
3:x+8x+4
X X :
-2 0
_20_—

X

Class Work
Find (a) the intervals of increasing or decreasing, b) the local maximum and minimum
values of the points of inflection. Then use this information to sketch the graph.

a) f(x)=x" —x b) f(X)=xvVx+1 c) f(x)=x"?(x+3)*"
4.4.3 Curve Sketching
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Now we apply the knowledge that we have developed in this chapter for sketching the
graphs of different functions. The table below lists the items that are most important in

graphing a function f.

Property

f has y intercept ¢
f has x intercept ¢

o y axis
symmetric with respect to theq ™
origin

f has a relative maximum value at ¢
f has a relative minimum value at ¢

f is strictly increasing on an open interval I
f is strictly decreasing on an open interval I
Graph of fis concave upward on |

Graph of fis concave downward on I

(c, fO) is an inflection point
f has a vertical asymptote X =C

f has a horizontal asymptote X =d

Test
f(0)=c
fo=c
f(=x) = f(x)
f(=x)=-f(%)

f'(c)=0and f'changes from v+ tov —
{f'(c) =0and f"(c)<0

f'(c)=0and f'changes from v—tov+
{f'(c) =0and f"(c)>0
>0 for all except finitely many x in I

<0 for all except finitely many x in I
f"(x)<0 Vxel

f"x)>0 Wvxel
f " changes sign at ¢ and usually f"(c)=0
lim f(X)==c or lim f(X) =+

x—>c*

limf(x)=d or lim f(x)=d

X—>0

2

Example If g(x)=1 =
—X

Solution:
1. Analyzethe first derivative.

discuss and sketch the graph of g.

x) = 2-x This has a root at x = 0. Possible
& o 2>2 local maximum or minimum here.
1 -X

Notice that neither g(x) nor its derivative are defined at x =1 and x = —1.
The derivative is negative for x < 0, except at x = —1, where it is not
defined. It is positive for x > 0, except at x = 1, where it is not defined.

2. Analyze the second derivative.

2 There are no values of x where

" 246X alde

g'(x) = PR the second derivative equals zero,
(1 _ Xz) so the graph of g has no inflection

points.
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g"(0) =2 At x =0, a critical number, the
second derivative is positive, so the
graph is concave up at this point, and
has a local minimum.

3. Find horizontal asymptotes.

2

lim
x—>w ] -X

simplifies to —1

2
X simplifies to —1

lim
X—> -0 ] =X

h(x) := —1 1s a horizontal asymptote.

4. Find vertical asymptotes.

Since g is undefined at 1 and —1, examine the limits of g as x
approaches these values.

2
X

lim simplifies to  —oo

X—>1Jr 1 -X

2

lim simplifies to oo

x>1 1-x

2

lim simplifies to oo

X—>—1+ 1 -X

2
simplifies to —oo

lim
Xx>—-1 1-%

g has vertical asymptotes at x =1 and x =—1.

5. Putit all together.

r:=-5,-499..5 Range for graphing
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Notice that all the aspects of the graph you found in your analysis
are present: a local minimum at x = 0, vertical asymptotes at x = 1
and x =—1, a horizontal asymptote at y =—1, downward sloping
when x < 0, upward sloping when x > 0.
Class Work
Discuss and sketch the graph of f if
2 2
D) F0 = BI0=— o 9f=ae &) F()=
X" —X-2 (x+1)

VX2 +1 3x=5

Note your sketch should look like one of the graphs bellow.

4__
_—e e— . e— . — - _2_ __________
-10 = Ho 5 10
~4 ) 0 2 4 !
= B g
:'5__
_4__
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5 Review of Techniques of Integration

5.0 Introduction

Before we see techniques of integration let us revise the integrals of important functions in
the following table.

Derivative Indefinite integral
D,(x) =1 1. Jldx:jdx:x+c
Xr+1 . Xf+1
D =x"(r#-1 2. | x"'dx = +c (r=-1
X(rHJ ( ) J r+1 ( )
D, (sin X) = cos X 3. jcosxdx=sinx+c

D, (-cos X) = sin X

N

. Isin XdX = —cosX+C

W

D, (tan X) = sec” X . Jsecz Xdx = tan X + ¢

D, (—cotX) = csc® X 6. J.cscz XdX = —cotX+¢C
7

D, (secX) = sec X tan X ) j-secxtan xdx =secX +C

D, (—cscX) = esc xcot X 8. Jcscxeotxdx=—cscx+c
D, (e*) =e" 9. [erdx=e*+c
D, g P 10. '[axdx: ¢
Ina Ina
1 1
D, (Inx)) = — 11. I—dx:ln|x|+c
X X
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1 1 X
D SiIl_ll = D (%)= —— 12. 4dX=SiI171—+C
iD= D) = —— J e .
1 1 X
D COS_ll = D&)=-— 13. 4dX=—COS_1—+C
(o5 1D = D == J e -
D, Y=L b=t e[t a=Lan X
a a a l+(3) a a +x a’+x a a
1 X 1 1 1 X
D —Secl— = 15. 4dX=—sec —+C
X(a aj xvVx* —a’ J.x\/xz ~a’ a a

Table 1.0
I hope the student does not forget how to evaluate the definite integral by using the
following fundamental theorem of calculus:

Theorem 1.0 (Fundamental theorem of calculus)

Suppose f is continuous on a closed interval [a,b].
Part | If the function G is defined by

G(X) = j f (t)dt

for every x in [a,b], then G is an antiderivative of f on [a,b].
Part Il If F is any antiderivative of f on [a,b], then

b
j f (x)dx = F(b) - F(a).

Example 1.0 Evaluate .3[(6x2 —5)dx.
Solution: An antiderivatix_fze of 6x> —5is F(X)=2x’ —5x. Then
.3f(6x2 ~5)dx =2x° — SX‘:
5
=[23)" -5(3)]-[2(-2)" - 5(-2)] = 45.

5.1 Integration by Substitution

The formulas for indefinite integrals in Table (1.0) are limited in scope, because we
cannot use them directly to evaluate such as

'[«/Zx —5dx or J‘sin 3xdx

In this section we shall develop a simple but powerful method for changing the variable
of integration so that these integrals (and many others) can be evaluated by using the
formulas in Table (1.0).

Method of Substitution

If the integral to be evaluated is of the form

[ f(g0)g' (x)dx
we substitute U = g(x)and du = g'(x)dx, then the integral becomes I f (u)du.
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Example 1 Evaluate I\/2x —5dx.

Solution: We let u=2x — 5 and calculate du:
u=2x-5,du=2dx
Since du contains the factor 2, the integral is not in the proper form j f (u)du required in

the method of substitution given above. However, we can introduce the factor 2 into the
integrand, provided we also multiply by 4 . Doing this and property of integral we have

J.\/Zx—de = j\/zx—5§2dx
=1 [V2x—52dx

We now substitute and use the power rule for integration:
J.\/Zx —5dx = %J'\/Udu
= %I udu

75 +¢C

2
=5U” +C
=12x-5)"+¢

Example 2 Evaluate j sin 2Xdx.

Solution: We make the substitution
u=2x, du=2dx.
Since du contains the factor 2, we adjust the integrand by multiplying by 2 and
compensate by multiplying the integral by 1 before substituting:

[ sin 2xdx =1 [ (sin 2x)2dx
= %Jsinu du
=—Zlcosu+cC

=—21cos2x+¢C

It is not always easy to decide what substitution u = g(x) is needed to transform an
indefinite integral into a form that can be readily evaluated. It may be necessary to try
several different possibilities before finding a suitable substitution. In most cases no
substitution will simplify the integrand properly. The following guidelines may be
helpful.
Guidelines for changing variables in indefinite integrals
1. Decide on a reasonable substitution U = g(X).
2. Calculate du = g'(x)dx.
3. Using 1 and 2, try to transform the integral into a form that involves only the variable
u. If necessary, introduce a constant factor k into the integrand and compensate by
1/k. If any part of the resulting integrand contains the variable x, use a different
substitution in 1.
4. Evaluate the integral obtained in 3, obtaining an antiderivative involving u.
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5. Replace u in the antiderivative obtained in guideline 4 by g(X). The final result should
contain only the variable X.
The following examples illustrate the use of the guidelines.

Example 3 Evaluate J.x2(3x3 +2)"dx.

Solution: If an integrand involves an expression raised to a power, such as (3x> +2)',
we often substitute u for the expression. Thus, we let
u=3x’+2, du=9x’dx < idu=x*dx.

Comparing du = 9xdx with x*dxin the integral suggests that we introduce the factor 9
into the integrand. Doing this and compensating by multiplying the integral by 1/9, we
obtain the following:

[x*(3x* +2)°dx = [u" Ldu
:gJ‘umdu

1 ull
=—|—|+cC

9(11}
=403x*+2)" +c.

Example 4 Evaluate I X~+/3X —1dx.

Solution: To simplify the expression /3x—1, we let
u=23x-1, so that du =3dx.

Then
Nm %du

—
J.x«/3x—1dx = J'x\/3x—1dx
Thus we still need to find x in terms of u. From the equation u=3x —1 we deduce that
1
X=—(Uu+l).
3 (u+1)

Therefore
U+ Ju 1du

J.x\/3x—1dx:_|' ?«/3x—la;<:jg(u+l)\/agdu
:ﬂ(u% +u%)du

:l(gu%+gu%j+c

ols '3

=2 6x=1" + 2 0x-1)" +c.
45 27

Sometimes there is more than one substitution that will work. For instance, in Example 4
we could have let U=+/3x—1, then u> =3x—1o0r x=1(u” +1) and

2udu = 3dx so Zudu = dx,
As a result,
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‘(u (L S
J.x«/3x 1dx = J. x \3X— lzudu_j (u? +1u2udu
:—I(u +1)u’du

I(u +u )du_g(é *+lut)+c

:—(3x 72+ (3x 1 e,

Even though we used a different substltutlon, the final answer remains the same. Example 5
Evaluate JixeXz dx

Solution: We let
u=x?, so that du =2xdx.
Then

e” ‘du

Ixe dx = Ie xdx je”‘du
:%e”+c
1 .
=§e +C.

Example 6 Evaluate Il(l +Inx)*dx.
X

Solution: We let

u=1+1Inx, sothan du =ldx.
X

Then
'[l(1+ Inx)*dx = J'u“du = l(1+ Inx)® +c.
X 5
Example 7 Evaluate Itan xdx.
Solution: First write the integral in the following form

sin X
J.tan Xdx = J-

cos x
Now let U =cosX, so that du = —sin xdx.

sin X

Then Itan xdx = I dx = I&(—du) = —Inu| + ¢ = —In|cos X| +C.

cos X
Example 8 Evaluate jsec xdx.

Solution: We first put the integral in the form
Jsec xdx = Isec X

sec X + tan X sec’ X +sec X tan X
—dX:J dx

sec X + tan X sec X + tan X
If we now let U =sec X+ tan X, S0 that du = (sec X tan X +sec’ X)dx, then
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sec? X +sec X tan X
Jsec Xdx = _[ dx
sec X + tan X

=Ildu = Inju|+c
u
= 1n|sec X + tan X| +C.

2x
Example 9 Evaluate Ie—dx
/1 _ e4x
Solution: The integral may be written as in the first formula 12 of table 1.0 by letting a=1
and using the substitution
u=e”, du = 2e**dx.
Then

'[de = lJ-;du ~Lginurc=tein"e> +c
V1—e® 2°J1-u? 2

/2
Example 10 Evaluate I sin X cos” xdx

0
Solution: Let u = cos X, then du = —sin xdX hence

/2 1 1

J‘sin xcos* xdx = Iu“(—du) =——U’ =——cos’ X
0 5 5

z
2

0

1 1
=——cos’ Z+—cos’0=—
2 5

5
Exercise 1.2 Evaluate the following integrals.
1. J'sin2 xdx 2. Icsc xdx
N L 4 [
(X" +5) V1-2x%7
2 2
IXS\/XZ —1dx 6. jt—dt
SNt+2
2 o %
e X
7. dx
~1[ x? jx Inx)*
. V272
J- 3sin X dx 10 J-
1+2cosX

o J1—x*
5.2 Integration by parts

If we try to evaluate integrals of the type
.[xexdx, and Iln xdx

by using the method of substitution we obviously fail. But don’t worry the next formula
will enable us to evaluate not only these, but also many other types of integrals.
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Integration by parts formula
If u=f(x) and v=g(x)and if f'and g'are continuous, then

j f(x)g'(x)dx = f(X)g(X) —J.g(x) f'(x)dx or using U and v
Iudv =uv —Ivdu.
Proof By the product rule,
[FCOg00]'= F'()g(x) + f(x)g'(x)
or equivalently, f(x)g'(x) =[f(X)g(X)]—g(x)f'(x).
Integrating both sides of the last equation gives us
[ 00g'00dx = [ 00g00Tdx— [ g(x) ' (x)dlx.

The first integral on the right side equals f(x)g(x)+c. Since another constant of integration
is obtained from the second integral, we may omit ¢ in the formula; that is

[ 1009'00dx = F (0900 - [ 900 F'(x)dx. (1)
Since dv = g'(x)dxand du = f'(x)dx, we may write the preceding formula as
Iudv =uv— Ivdu.

Since applying (1) involves splitting the integrand into two parts, the use of (1) is referred
to as integrating by parts. A proper choice for dv is crucial. We usually let dv equal the
most complicated part of the integrand that can be readily integrated. The following
examples illustrate this method of integration.

Example 1 Evaluate I xe*dx.

Solution: The integrand Xxe* can be split into two parts X and e*. We let
u=x and dv=e"dx
Then du=x and V=Iexdx:eX
Consequently integration by parts yields
L et Lo

=
J'xexdx — xe* —J'exdx —xe* —e* +c.

Example 2 Evaluate
/3

a) J.Xsecz xdx b) J‘Xsecz xdx
0

Solution: a) We let here
u=x and dv=sec’ xdx
then du=dx and v=tanX.
Hence integration by parts yields

'[Xsecz xdx = Xtanx—'[tan xdx = Xtanx—(—1n|cos X|) +C

= Xtan X + ln|c0s X| +C.

b) The indefinite integral obtained in part (a) is an antiderivative of Xsec’ X. Using the
fundamental theorem of calculus (and dropping the constant of integration c), we
obtain
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/3
”J. xsec? xdx = [X tan X + 1n|cos X|]
0

7 /3
0

T T
=| —tan—+1n
(3 3

{% 3+ln%)—(0+0)

:%\/5—1112.

Example 3 Evaluate Iln xdx.
Solution: Let uU=Inx and dv=dx

Then du :ldx and v =X
X

and integrating by parts yields:

cos %D —(0+1Inl)

J.lnxdx:xlnx—jx(ldx):xlnx—jdx:xlnx—x+c.
X

Sometimes it is necessary to usse integration by parts more than once in the same

problem. This is illustrated in the next example.
/2

Example 4 Evaluate J' X7 sin 2xdXx.
0

Solution: Let
u=x> and dv = sin2xdx

Then du = 2xdx and v:—%coszx.

Thus using integration by parts we have;

7l2 l /2 7l2
J'x2 sin 2xdx = {——xz coszx} - j 2X
0 2 0

0

(— l cos 2dex
2

1 /2 /2
= {—Exz cos2x} + IXcos2de

0 0
but then since

1 /2 1 T 2 72.2
——X” c0s2X =——(—j cos2(5)-0=—
2 2\2 8

0
and
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/2

/2

.[Xcos2xdx [Xs1n2x} J- 1n2X

0 0
1z T 1 CcoS 2X i
—|=sin2(=)-0|—=| -
202 2 2 2 0
1 1 1
—| cos2 cosO|=—[-1-1]=——
4{ ( )— } [ ] 5

Hence,
/2 2 1

jx2 sin 2xdx = — — =,
8 2
The following example illustrates another device for evaluating an integral by means of
two applications of the integration by parts formula.
Example 5 Evaluate Iex cos xdx.

Solution: We could either let dv=cosxdx or let dv=e*dx, since each of these
expression is readily integrable. Let us choose
u=e* and dv = cos xdx

so that du=e”dx and v =sinX
Then by integrating by parts we have;
IexcostX:exsinx—Iexsinxdx. (1)

We next apply integration by parts to the integral of the right side of equation (1). Since
we chose a trigonometric form for dv in the first integration by parts, we shall also choose
a trigonometric form for the second. Letting

u=e* and dv =sinxdx so that

du=e“dx and v=—cosx
integrating by parts, we have
J.eX sin xdx = " (—cos X) — J.(—cos x)e*dx

Iexsin XdX:—eXcosx+Iexcostx. )
If we now use equation (2) to substitute on the right side of equation (1), we obtain
.[ex cos xdx =e”* sin X — [—ex CoS X + J.ex cos xdx
or Ie"cosxdx=exsinx+excosx—jexcosxdx.
Adding J.eX cos Xdx to both sides of the last equation gives us

2J.eX cos xdx =6 (sin X + cos X).

Finally, dividing both sides by 2 and adding the constant of integration yiels

1 .
jex cos xdx =§ex(smx +cos X) +C.

We could have evaluated the given integral by using dv =e*dxfor both the first and
second applications of the integration by parts formula.
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In conclusion we remark that integration by parts is effective with integrals involving a
polynomial and either an exponential, a logarithmic, or a trigonometric function. More
specifically, integration by parts is especially well adapted to integrals of the form

.[( polynomial) sin axdx, .[( polynomial) cos axdx,
.[( polynomial )e® dx, .[( polynomial) In xdx.

In all except J' (polynomial)In xdx, the most effective choice of u is the polynomial,

since the derivatives of a polynomial are simpler than the polynomial itself, while the
choice u =1Inx is effective for j(polynomial)ln xdx .

Example 6 Evaluate j sin~' xdx.
Solution: Let

u=sin"' x and dv = dx so that du = dx and v=x.

1-x?
Then
X

1-x?
Now we use substitution to solve the integral to the right. That is let

dx

J‘sin_1 xdx = xsin ™! X—_[

w=+1-x> or w* =1-x* so that 2wdw = —2xdx
we then have

X - dx = — M:—'[dW:—W+c:—\/1—x2 +cC
X

Jo== "
_[Sin_l xdx = xsin”' x++/1-x* +c.

Consequently

Integration by parts may sometimes be employed to obtain reduction formulas for
integrals. We now find reduction formulas of J. sin" xdx and J. cos" xdx with the help of

integration by parts.
Example 7 Find a reduction formula for J-sin” Xdx.
Solution: First write J.sin" xdx = J-sin”_1 xsin xdx and let
u=sin"" x and dv=sinxdx so that
du=(n-1)sin"” Xcosxdx and Vv =—cosX

then using integration by parts we have:
jsin" xdx = —cos Xsin"™" X +(n — l)jsin”‘2 X cos” xdx
since cos” X =1—sin’ X, we may write
Isin“ xdx = —cos xsin"" X+ (n — I)J. sin" xdx — (n — I)J‘sinn xdx.

Consequently,
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Isin” xdx + (n — l)j sin" Xxdx. = —cos xsin"™" X+ (n — I)J' sin""* xdx.
The left side of the last equation reduces to nJ'sinn xdx . Dividing both sides by n, we

obtain
. 1 e n-1¢. .
J.sm” xdx = ——cos xsin""' x +—J.sm” ? xdx.
n n
In a similar fashion we can show the reduction formula for jcos” xdx is given by:
1 . _ n-1 -
J.cos” xdx = —sin Xcos"" X + —— | cos" > xdx.

n n
Example 8 Evaluate j sin® xdx.

Solution: Using the reduction formula for sine with n =5 gives us
Isins xdx = —lcos xsin® X + i_[sin3 xdx
5 5
A second application of the reduction formula, to Isins xdx , yields
J.sin3 xdx = —lcos Xsin® X + 2J-sin xdx
3 3
1 .
_ _Leosxsin® x=Zcosx + C,
3 3
Consequently

. 1 . 40 1 . 2
jsmS Xdx = —=cos xsin* X+ —| —=cos xsin® x— = cos X + C,
5 50 3 3

1 . 4 4 . 2 8
=——cosXsin" X—-——cosXsin~ X ——cos X+ C.
15 15

Exercise 1.2
Evaluate the integral
1. jxe’xdx 2. jxlnxdx
3. Jsec3 Xdx 4. Jx2xdx
/2
5. JXtanXsechx 6. J-2tsin2tdt
0
7. j(x +1)'°(x + 2)dx 8. jsin(ln x)dx (Hint: Let U = sin(In X))
9. J.tan‘l xdx 10. .[cos\/;dx

Evaluate the integral with the help of the reduction formulas
/2

11. J. cos3§dx 12. Icoss xdx

0

5.3 Integration by Partial Fractions

An expression for rational function is called a proper fraction if the degree of the
numerator is strictly less than the degree of the denominator; otherwise it is called an
improper fraction. In case of improper fraction we actually divide the numerator by the
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denominator and the improper fraction is expressed in terms of a polynomial and a proper
fraction. For example,
2x+1 7 4%’ =3%x% +2x-1 34x-26

=2+ and > =4x-3-"—
X-3 X-3 X" +9 X" +9

Let us consider a proper fraction where P and Q are polynomials in X, then it can

Q(x)
be proved that
M: F+F +--+F
Q(x)
Such that each term F, of the sum has one of the forms
A or Ax+B
(ax+Db)" (ax*> +bx+c)"

for real numbers A and B and a nonnegative integer n, where ax” +bx+ cis irreducible
in the sense that this quadratic polynomial has no real zeros (that is, b* —4ac < 0). In this
case, ax’ +bx+c cannot be expressed as a product of two first-degree polynomials with
real coefficients.

The sum F, + F, +---+ F, is the partial fraction decomposition of P(x)/Q(X), and each

F, is a partial fraction. We state guidelines for obtaining this decomposition.

Guidelines for partial fraction decompositions of P(x)/Q(x)
1. If the degree of P(X) is not lower than the degree of Q(X), use long division to obtain
the proper form.
2. Express Q(x) as a product of linear factors ax + b or irreducible quadratic factors

ax® +bx + ¢, and collect repeated factors so that Q(X) is a product of different factors
of the form (ax +b)" or (ax” +bx+c)" for a nonnegative integer n.
3. Apply the following rules.
Rule a For each factor (ax +b)" with n >1, the partial fraction decomposition
contains a sum of n partial fractions of the form
A A LA
ax+b (ax+b)? (ax+h)"
where each numerator Ay is a real number.

Rule b For each factor (ax” +bx +¢)" with n>1,and with ax” + bx + ¢ irreducible,
the partial fraction decomposition contains a sum of n partial fractions of the form

A X+ B, N A X+ B, N A X+ B,
ax’ +bx+c  (ax® +bx+c)? (ax® +bx+c)"’
where each Ay and By is a real number.
4x* +13x—
Example 1 Evaluate J'3+—39dx.
X~ +2X" =3X

Solution: We may factor the denominator of the integrand as follows:
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x> +2X% =3 = X(X* +2X+3) = X(X+3)(x—1)
Each factor has the form stated in Rule (a) of the guideline, with n = 1. Therefore the
partial fraction decomposition has the form

4%* +13x -9 A B C

X(X+3)(X=1) X X+3 x-1
Multiplying by the LCM of the denominators gives us
4%* +13x—=9 = A(X +3)(X=1) + Bx(Xx = 1) + Cx(x + 3). (+)
In a case such as this, in which the factors are linear and nonrepeated, the values of A,

B and C can be found by substituting values for X that make the various factors zero. If
we let x = 0 in (»), then

-9=-3A, or A=3.
Letting x = 1 in («) gives us
8=4C, or C=2.
Finally, if x =-3 in (+), we have
-12=12B, or B=-1.
The partial fraction decomposition is, therefore,
4x* +13x-9 23, -1 N 2
x*+2x*=3x X x+3 x-1
Integrating and letting C denote the sum of the constants of integration we have

2
IM —I dx+J.—dx+ —dx
X(X+3)(x—1)
:3ln|x|—1n|x+3|+21n|x—1|+C
= ln‘x3‘—ln|x+3|+ln|x—1|2 +C

3y 1\2
In X*(x—1)
X+3
Another technique for finding A, B, and C is to expand the right-hand side of () and
collect like powers of x as follows:
4x* +13x-9=(A+B+C)x* + (2A-B+3C)x—3A
We now use the fact that if two polynomials are equal, then coefficients of like powers

of X are the same. It is convenient to arrange our work in the following way, which we
call comparing coefficients of x.

+C.

Coefficients of x*: A+B+C=4
Coefficients of x: 2A-B+3C =13
Constant terms: -3A =9
We may show the solution of this system of equations is A =3, B=-1, and C = 2.

13-7x
————dx
(X+2)(x-1)°
Solution: By Rule (a) of the Guidelines the partial fraction of the integrand has the form

Example 2 Evaluate j
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13-7x A B C D
(x+2)(x=1)7 x-1 (x=1° (x=1° x+2

Multiplying both sides by (x+2)(x—1)" gives us

13-7x=AX-1)*(X+2)+ B(Xx=1)(Xx+2)+C(x+2)+ D(x—1)° (
Two of the unknown constants may be determined easily as follows.
Let x =1 in (+) the we obtain 13-7=C(1+2) or C=2.
Similarly, letting x = -2 in («) yields 13+14=D(-2-1)" or D =-1.
The remaining constants may be found by comparing coefficients. So comparing the
coefficients of X* on both sides of (+), gives

0=A+DorA=-D=1.
And comparing the constant terms on both sides of (x), gives

13=2A-2B+2C-D or B:%(2+4+1—13):—3.

)

*

Therefore
13-7X 1 -3 2 -1
= + ~+ ~+ :
(x+2)(x-1) x-1 (x=-1)° (x-1)" x+2
Thus
'[ 13- 7x 3dx:J' ! dx—f 3 2dx+j 2 3)dx—j L ax
(x+2)(x-1) X—1 (x—=1) (x=1) X+2
k=g - fx+2]+C
Xx-=1 (x-=1)
D Sl PO S ~+C
IX+2| x-1 (x=1)
2
Example 3 Evaluate Ide.
X" +X" =2

Solution: The denominator of the integrand may be factored as follows:
X+ x> =2=(X=1D(Xx*+2x+2)

Applying Rule (b) of the Guidelines to the irreducible quadratic factor X* +2Xx+2 we
have

X2 +2x+7 A . Bx +C
>+ x? =2 x—=1 x*+2x+2

This leads to

X*4+2X+7 = A(X> +2x+2)+ (Bx+C)(x=1) (+)
As in previous examples, substituting X =1 in (x) gives us

10=A(5) or A=2
The remaining constants may be found by combining like powers of x:

X +2X+7=2+B)X*+(4+C-B)x+(4-C) (++)
and comparing coefficients in (xx).

Coefficients of x*: 1=2+B or B=-1
Constant terms: 7=4-C or C=-3

Thus the partial fraction decomposition of the integrand is
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X? +2x+7 2 —x-3

3 2 = T .

X +X" =2 X=1 X" +2x+2
Consequently

2

Ix3+22<+7dxzj 2 dx—J‘zxidx
X"+ X" =2 x—1 X*+2X+2

To evaluate the right-hand integral, we first complete the square in the denominator to

obtain X +2Xx+2=(x+1)> +1

and substitute U=X+1, sothatdu=dx andx+3=u+2

Therefore
J- 2X+3 dXZJ. X+23 dX:J-U2+2du
X" +2X+2 (x+1)" +1 u+1
:I 2u du+2 %du
u®+1 u-+1
-1 22u du+2 %du
29U +1 u”+1
=%ln(u2+l)+2arctanu+C
= %111(()(4‘1)2 +1)+2arctan(x +1) +C.
Hence
2
JX3+2§+7dx: 2 dx—j 2x+3 dx
X+ X" =2 Xx—1 X" +2X+2
=2In|x -1 - In((x +1)* +1) - 2arctan(x + 1) + C
3 2
Example 4 EvaluateJ.SX X+ X 3dX.

(x> +1)°
Solution: Applying Rule b) of the Guidelines, with n = 2, yields
5% =3x*+7x-3 Ax+B Cx+D
= + :
(x* +1)° x> +1 (x> +1)?
Multiplying by both sides of the equation by (x> +1)* gives
5% =3x* +7x-3=(AX+B)(x* +1)+Cx+D
5%’ =3x> +7x-3=Ax’ + Bx> + (A+C)x+(B+D)
We next compare coefficients as follows:

coefficients of x°: 5=A

coefficients of x*: -3=B

coefficients of x : 7=A+C orC=2

constant terms : 3=B+D orD=0
Therefore
5% =3x*+7x-3 5x-3 2X
2 2 = 2 + 2 2
(X" +1) X" +1 (X" +1)

so that
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J5X3_3X2+7X_3 J-Sx dx—j 3

(x* +1)° e x> +1

dx
sin X(2 + cos® X)’

Example 5 Evaluate I

Solution: Since
J- dx 3 ,[ sin xdx
sin X(2+cos” X) ¢ sinX*(2+cos” X)

gl

= %ln(x2 +1)—3arctan(x* +1) — 5
X

2X I

(x> +1)°

! +C.
1

substituting
u=cosx and du =—sin xdx, we get
,[ dx _,[ sin xdx _J- —du _J- u
(1-u”)2+u?) U’ -1’ +2)

sin X(2+cos” X) 7 sin X*(2+cos’ X)

But then the partial fraction representation for the integrand of the last integral has the

form
1 A B Cu+D

2 2 - + T
u - +2) u-1 u+l u +2
Then by similar procedure as the above examples we have

1=AUu+DU>+2)+Bu-1)Uu*+2)+(Cu+D)yu-1)u+1) (+)

Then putting u=1 gives us 1=6A or A=1/6
Putting u=-1 gives us 1=-6B or B=-1/6

We now compare coefficients to find the remaining two constants

Coefficients of x°: 0=A+B+C or C=0
Constant terms: 1=2A- 2B-D or D=-1/3 Therefore
1 176 -1/6 -1/3
= + +
u*-Hu’*+2) u-1 u+l u*+2
so that

du 1
J(uz—l)(u2+2) :gju—l U_E u+1du+§ju2+2

1

u-1
——=arctan—

Nust 3f \/_

Consequently resubstitutmg cosX for U we have

J- dx |cosx 1| cosx
sinx(2+cos? x) |cosx+l| 3\/_ f
Exercise 1.3
X’ x —12x+4
1. sz_ldx 2. j
3. J-x +x+1 n —x* +X 2+x+23
oxP+1 (X+D(x" +1)
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dx; (H int : Substitute u = \/§)

5J~ x> —1 J~\/_+l

x? +3x+4

/4
X X . .
7. Jsm cos J.tan3 xdx; (H int : Substitute u = tan Xx)
sin” X +1
dx

9. 10. | —————

Il—e“ Il+3e*+2e“
5.4 Trigonometric Integrals

Integrals such as

Isins X cos® Xdx, J“[&ln2 xsec® Xdx, and Isin 3X cos 4xdx

are called trigonometric integrals because their integrands are combinations of
trigonometric functions. This section is devoted to trigonometric integrals especially
those in which the integrands are composed of the basic trigonometric functions.

Guidelines for evaluating integrals of the form J.sinm xcos" xdx
1. If misan odd integer: Write the integrals as
Isinm xcos" xdx = '[sin ™! X cos" xsin xdx and express sin™ "' X in terms of cos X
by using the trigonometric identity sin” X = 1 —cos” X. Make the substitution
U=cosX, du=—sinxdx
and evaluate the resulting integral.
2. If nisan odd integer: write the integral as
jsinm xcos" xdx = J‘sinm xcos"" Xcos xdx
and express cos”" X in terms of sin X by using the trigonometric identity
cos” X =1-sin” X. Make the substitution
U =sinX, du = cos xdx
and evaluate the resulting integral.

3. Ifmand n are even: Use half-angle formulas for
I —cos2X 1+ cos2X

sin’ X = ————= and cos’ X = ————— and the identity
2 2
. 1 .
SIn XCOs X = Esm 2X
to reduce the exponents by one-half.

Example 1 Evaluate J.sin3 X cos” Xdx.

Solution: By guideline 1
J‘sin3 X cos® xdx = J‘sin2 X cos? Xsin xdx

= j(l —cos” X)cos” Xsin XdX.

If we let U =cos X, then du = —sin Xdx, and the integral may be written
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_[sin3 Xcos” Xdx = I(l—uz)uz(—du) = j(u4 —u?)du
_ 15 _ 1y’
—gU —§U +C
=Lcos’ x—1cos’ x+C.
Example 2 Evaluatej.sinZXcos4 xdX.

Solution: By guideline 3 we have
jsinZXcos4 xdx = I(sinzx cos” X)cos” xdx

= I(sin X cos X)* cos® xdx

2
= I(lsin 2Xj (—1 + oS 2dex
2 2

= lJ‘sin2 2xdx +1J.sin2 2X cos 2xdx
8 8

o 1 —cos4x . .
Puttingsin® 2X = % andUu = sin 2X so that du = 2cos2xdx in the first and second

integrals of the right of the last equation we get:
1 ¢1-cos4 Il
- —J'—COS X dx + —J.—uzdu
8 2 872
1 |

=—X——sm4x+iu3 +C
16 64 48

:LX—Lsin4x+isin3 2x+C.
16 64 48

An alternative way to evaluate jsinm xcos" xdx when m and n are even is to use the

identity sin” X+ cos” X = 1, but this time we transform the integral into integrals of the form

J.sink xdx or of the form .[ cos® xdx , which can be evaluated by the reduction formulas.

Guidelines for evaluating integrals of the form Itanm xsec" xdx
1. If misan odd integer: Write the integrals as
I tan™ xsec" xdx = I tan™" xsec"" Xsec X tan xdx and express tan™"' X in terms of

sec X by using the trigonometric identity tan” X = sec” X — 1. Make the substitution

U =secX, du=secXtan xdx
and evaluate the resulting integral.

2. Ifnisan even integer: write the integral as
jtanm xsec" xdx = jtanm xsec" 2 xsec® xdx

and express sec" > X in terms of tan X by using the trigonometric identity
sec’ X =1+ tan’ X. Make the substitution

U = tan X, du = sec? xdx
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and evaluate the resulting integral.

3. If miseven and nis odd: Reduce to powers of sec X alone by using the identity

tan® X =sec’ X —1.
Example 3 Evaluate J.tan3 xsec’ xdX.

Solution: By guideline 1 above
J.tan3 xsec® XdX = Itanz xsec” X(sec X tan X)dx

= I(secz x —1)sec* x(sec X tan X)dx.
Substituting u = sec xand du = sec X tan xdx, we obtain
[tan3 xsec® Xdx = j(u2 —Du*du
:j(u6 —u*)du.
7 5
=tu’-tu" +C
=1lsec” x—1sec’ x+C
Example 4 Evaluate J.tan3 xsec* xdx.

Solution: By guideline 2 above
Jtan3 xsec* xdx = J'tan3 xsec® xsec? xdx

= J'tan3 x(1+ tan” X)sec” xdx
If we let U = tan X, then du = sec’ xdx, and
_[tan3 xsec’ xdx = ju3(l+u2)du
= j (U’ +u’)du
=lu®+1u*+C
=1tan’ x+1tan® x+C.
Integrals of the form Icotm xcsc" XdX may be evaluated in similar fashion.
Finally, the evaluation of integrals of the form I sin ax cos bxdx depends on the
trigonometric identity
. 1. 1.
sin Xcosy = Esm(x -y)+ Esm(x +Y)
With the appropriate replacements, this identity becomes
. 1. 1 .
sinaxcosbx = Esm(a—b)x +Esm(a+ b)x (+)

Notice that 1sin(a—b)x and 1 sin(a + b)xare easy to integrate by substitution.
Example 5 Evaluate Isin 4X cos 2xdx.
Solution: Using () with @ =4 and b =2, we find that
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J.sin 4xcos2xdx = J.(%sin 2X + %sin 6dex

= —lcos 2X —isin 6x+C.
4 12
Note that integrals of the form
J. sin ax sin bxdx and J. cos ax cos bxdx

can be found by similar techniques.
Exercise 1.4 Evaluate the following integrals.

/2
1. .[sin:’ xcos®* xdx 2. J.sin2 X cos’ xdx
0
3. J.«/sin X cos’ xdx 4. J.(tanx+cot X)* dx
5. Itan3 xcsc? xdx 6. Icot3 xcsc® xdx
/4
7. JsinSXsin3XdX 8. IcosxeosSde
0
/3
9. Itan xsec’’? xdx 10. Itan6 xdx

0

5.5 Trigonometric Substitutions
Observe that the trigonometric substitution X = asin @ simplifies the expression

va® —x* , with a>0, into a trigonometric expression without radical i.e
\/a2 -x* = \/a2 —a’sin® @ = a\/l—sin2 6 =acosd .

We can use a similar procedure for va® + x> ,and x> —a*. This technique is useful for
eliminating radicals from these types of integrands. The substitutions are listed in the
table 1.1.

When making a trigonometric substitution we shall assume that @ is in the range of the

corresponding inverse trigonometric function. Thus, for the substitution X = asin @, we have
—/2<60 < 7/2, In this case, cos@ > 0.

Trigonometric Substitutions

Expressions in integrand Trigonometric substitution | Interval(s)
Ja? —x? X =asiné —n/2<0< /2,
*,a2+X2 X=atan@ —72'/2<(9<7Z'/2,
Table 1.1
1
Example 1 Evaluate I4dx.
X*V16 - x*

Solution: Since \/16 —x? = \/42 — x?, we substitute
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X =4sin @, so that dX =4cos@d@ for —7/2<0 <7 /2.

Then
1 1
—dx = (4cosB)da
szx/16—x2 I16sin2 016 —16sin> @
1
= (4cos0)do
J‘16sin2 64+/1—sin’ 6

L
167 sin’ @

déo :chsc2 edo
16

= —icotﬁ +C.
16

In order to write the answer in terms of the original variable X, we draw the triangle as
figl.1, in which X =4sin 8.

X 2
16 — x
cotd = ———
A X
16 — x
Fig 1.1
Thus
2
;dx :—Lcot0+C =—&+C.

X21,16—X2 16 16X

5/2

Example 2 Evaluate J\/25 —4x%dx

-5/2

Solution: Because v25—4x> = \/52 —(2x)?, we are led to substitute

2X =5sin @, so that X=§sin6’, and thus dx=§cos6d<9

For the limits of integration we notice that
if x=—3then #=-%and if x=3 then =7.

Therefore
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5/2 5/2
j\/25—4x2dx= j 52 —(2x)%dx

-5/2 -5/2

wl2 5
= J. 52 —5%sin” H(ECOSGJdG

-7/2
/2
J\/ —sin” @(cos@)dé
-z /2
/2
:é jcoszﬁdﬁ
-/2
/2
25

( l9+—sm20j
4

2 -r/2

25 V4 25
PR [ — =—7
214 4 4
Example 3 Evaluate I4dx

216+ x*

Solution: The denominator of the integrand has an expression of the form va* + x*
with a =4. Hence, using table 1.1, we make the substitution
X =4tan@, dx =4sec’> Al6.

Consequently
V16+ x> =16 +16tan2 0 = 441+ tan @ = 4v/sec> O = 4secd
1 1
. dx= 4sec’ O
and '[XZ«/16+ % "‘16tan2 9(4sec¢9)
:i seczﬁ _ cosd 0
167 tan” @ 167 sin* @
3 1
16sin &

To give the answer in terms of X, we use the triangle in Fig 1.2, with X =4tan& . We then
X

find that
V16 + X2
sinf =——=— and
X . J16+ X2
= J 1 1 16+ x2
— X ==
x24/16 + X2 16siné 16X

Example 4 Evaluate I ——dx.
X

4 +C.

Fig 1.1
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Solution: The domain of the integrand consists of (—o,—3] and [3,),but since the
interval over which we must integrate is [-6,-3], we seek an antiderivative whose domain

is contained in (—o0,—3]. Since \/X2 -9 = \/X2 —37, we let
X =3secd, so that dx =3secftanA @

and notice that vx> —9 =+/9sec> @ —9 = 3tan@. For the limits of integration we observe
that

if x=-6then ezsec-l(—z):%”, and if x=-3 then 6 =r.

Therefore
-3 [.,2 _ V.4 / 2 _
J-X49dX: J. 9SLﬁg(?’secé’tanﬁ)dﬁ
s X W 3sect
- 310 5 ecHtan0)do =3 [ tan” a6
42/335600 47 /3

T
4 /3

=3 j(sec2 0 —1)d6 = 3(tan 0 - )

4r/3

=7 -33.
Integrals containing vbx* +cx+d
By completing the square in bx”> +cx+d we can express Vbx*+cx+d in terms of
\/ a’-x?, \/ x> +a’, or vx*> —a’ for suitable a>0. Then a trigonometric substitution

eliminates the square root as before.

;dx_
VX? +8x+25

Solution: We complete the square for the quadratic expression as follows:
X*+8X+25=(x>+8x )+25

=(X* +8Xx+16)+25-16
=(X+4)*+9

Example 5 Evaluate '[

Thus,
1 1
—— X = | ——dx.
'[\/x2+8x+25 J.w/(x+4)2+9
If we make the trigonometric substitution
X+4=3tand, dx=23sec’0dé
then

J(X+4)> +9 =9tan> 0 +9 =3ytan’ 6 +1 = 3secO
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1 1
— dx=
I\/x2 +8X+25 I3sec€

and :Isecﬁdﬁ

3sec’ 6doO

= 1n|sec9 + tan 9| +C.

Using our formulas for tan @ and sec @, we conclude that

2
- o sx2s xed]
VX2 +8x+25 3 3
Exercise 1.4 In Exercises1-10 evaluate the integral.
2N3/2
N A ) Ay,
X9 - x? X
I N
1 1
3. | ————=dx 4, | —=0dx
!)‘(3x2 +2)°? !m
6 2
5. ;dx 6. jamsecdx
373 XX =9 7
e 1
7. | ——=0dx 8. | ——=dx
'[ 1-e* J.\/4x—x2
9. j%dx 10. jz)(;sdx
X" =2X+2 OX” +6x+17

5.6 Improper integrals

b
The definite integral .[ f (X)dx has meaning only when f is continuous on [a,b]

a
consequently bounded on [a,b]. We say f is bounded on an interval | if there is a constant

M such that | f (X)| < M for all x in I. In this section, we shall extend the definition of the

definite integral when either the integrand or the interval of integration is unbounded.
Such integrals are called improper integrals.

1.6.1 Integrals Over Unbounded Intervals

If f is continuous on [a,0) , then the improper integral I f(x)dx converges if

a

t—ow

t
limj f (Xx)dx exists. In that case
a

T f(x)dx = Pj{,}j f (x)dx (1)

If the limit does not exist, the improper integral diverges.
Again if f is continuous on (—o0,a], then
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T f(x)dx = Lir_l}j f (x)dx ()

provided the limit exists.
Example 1 Determine whether the integral converges or diverges, and if it converges,
find its value.
o0 o0 1
(a) j (b) [——dx

5 X
o (X+1) o X+1
Solution: (a) Following the discussion above and equation (1) we have

o) t t
;dx = lim de = lim{_—l}

o (X+1)? ey (X+1)° toe] X+1 ],
—im 4L 04121
oo t4+1 0+1

Thus, the improper integral converges and has the value 1.
(b) Using equation (2)

R 1
——dx=lim|——dx
o X+1 oo X+1
= ym[ln(x +D];
= ym[ln(t +1)—In(0 +1)]
= ym[ln(t —D)]=co.

Since the limit does not exist, the improper integral diverges.

1
Example 2 Determine whether the integral Iexdx converges or diverges, and if it
converges, find its value.
Solution: As in Example 1;

oo el
-0 t
:tligl[e‘ —e']=e

Thus, the integral converges and has the value e.
Finally, for integrals over the range (—o0,0), we write

Tf(x)dx = j{f(x)dx+].i f (x)dx 3)

provided both of the improper integrals on the right converge.
If either of the integrals on the right in (3) diverges, then j f (x)dx is said to diverge. It

—00

can be shown that (3) does not depend on the choice of the real number a.
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0

Example 3 Determine whether .[

- dx diverges.

14X
Solution: Using (3), with a =0, we have
Tl ¢l !
dx = dx + dx.
_L1+x2 _[01+x2 -l.1+x2

Next, applying (2)

0 0
I ! 5 dx = lim 5 dx = lim [arctan X]?
S+ X to-e 14X to>—o
= tlim [arctanO - arctant] =0-(— %) = %

Similarly, we may show, by using (1) that

J. ! 2dx:z.
o I+ X 2

o . T
Consequently the given improper integral converges and has the value —+— = 7.

1.6.2 Integrals with Unbounded Integrands
We now consider a function f that is continuous at every point in (a,b] and unbounded

near a.By assumption f is continuous on the interval [t,b] for any tin (a,b), so that

b
J. f (x)dx is defined for such t. If the one-sided limit
t

t—a

b
lim [ f (x)dx
t

b
exists, then we define I f(x)dx to be the limit. This idea leads us to the following

definitions:

(1) If f is continuous on [a,b) and discontinuous at b, then
b t
[ foodx = lim [ f00dx, (4)  provided

t—b~
a a
the limit exists.
(i1) If f is continuous on (@,b]and discontinuous at a, then

b b
[ foodx = lim [ foodx, (5)

provided the limit exists.

As in the preceding section, the integrals defined in (4) and (5) are referred to as
improper integrals and they converge if the limits exist. The limits are called the values of the
improper integrals. If the limits do not exist, the improper integrals diverge.

2
1
Example 4 Evaluate j—dx.
' V2 -

J2-x
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Solution: Since the integrand has an infinite discontinuity at X =2, we apply (4) and have
2 t
1 1
———dx = lim | ——=dXx
'1[\/2—x =27 /2 =X
= lim[-2~+/2 — X]}
t—>2"
=lim[-2v2 -t - (-2v2-1]=2.
t—>2"

1
. . . 1 .
Example 5 Determine whether the improper integral I—dx converges or diverges.
X
0

Solution: The integrand is unbounded near 0. Applying (5) gives us

1 1

Jldx = lim ldx = lim[In x]; = lim[In1—Int] = .
X

0

t—0" Y X t—0"* t—0"*
t

Consequently the improper integral diverges, since the limit does not exist.

We give the definition of another improper integral as follows.
If f has a discontinuity at a number ¢ in the open interval (a,b) but continuous elsewhere
on [a,b], then

b c b
j f (x)dx = j f (X)X + j f (x)dx, (6)
provided both of the improper integrals on the right converge. If both converge, then the

b
value of the improper integral I f (x)dx is the sum of the two values.

a

dx converges or diverges.

4
Example 6 Determine whether the improper integral I 5
0

(x=3)
Solution: The integrand is undefined at x = 3. Since this number is in the interval (0,4),
we use (6), with ¢ = 3:

¢ | |
J.(x—3)2dX:;[(x—3)2dX+J-(x—3)2dX

0 3
For the integral on the left to converge, both integrals on the right must converge.
However, since

the given improper integral diverges.
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The other kind of improper integral is found if f is continuous in (a,b)and is unbounded

near both a and b. We say that I f(x)dx converges if for some point ¢ in (a,b) both the

c b
integrals If(x)dx and If(x)dx converge. Otherwise we say that the integral is

divergent.

[ 1-2x
Example 7 Determine whether dx diverges.
’ | e v
Solution: The integrand is unbounded near both the endpoints 0 and 1 and is continuous
on (0,1). Consequently the integral is of the type under consideration. If we let ¢ =2 ,then
we need to analyze the convergence of
3/4 1 1— 2X
and | 22X

j\/x x> sa VX=X

For 0<t<z we have

3/4 3/4
j 122X gy = fim | =2 dx = lim[2v/x - x]

0 IX _ X t—>0* ,X X t—>0*
= grg[zw% —Vt-t*)]=%
A similar computation shows that the second improper integral also converges and that
j 1-2x 3
/4N X— x> 2
Therefore the original integral converges and
j-1—2x dx—J. j -2x V3 3 _
o VX=X VX=X X=x2 22
Exercise 1.6
Determine whether the integral converges or diverges, and if it converges, find its value.

3/4

1+ x° X > _'[o(XJr3)2
° 1 T -x?
3._!. xz—ldx 4. Ixe dx
9_ /2 2de
5. l‘\/_ 6. !sec
7. iﬁdx 8. ]isecxdx
[ 3% -1
9. {de 10. J'XX_X
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5.7 Application of the Integral
Area (Review)

Definition: Let f and g be continuous on [a,b], with f(X) > g(x) for a<x<b. The
area A of the region between the graphs of f and g on [a,b] is given by

b
A= [T -g(0Tdx

Example 1 Find the area of the region bounded by the graphs of the equations

y=x>and y=+/x.

Solution: First sketch the graphs on the same plane. And find the intesection of the two
graphs by putting x> = v/X . Observe that

s
/ =Jx=>x'=xox—x=0

f/,f" Hence x=0 or < X(X=D(X*+x+1) x=1 since

Py x> + X +1>0 for every real x the two graphs intersect
vzl (L) :
A at (0,0) and (1,1). Moreover X~ < Jx on [0,1]. Thus

e 4 the area A of the region bounded by the graphs is
05T / 4 p given by
f jofJ W= 1 P 1 1
\ | J A=I(\/;—X2)=—X3/2——X3
N 0 3

3 0, 3

03 . 0.5 i L Example 2 Let f(x)=sinx and g(x)=cosx. Find
the area A of the region between the graphs of f and g on [0,27].

Solution: sinXx =cosX, on [0,2n] implies that tanx=1 on [0,2n]. And tanX =1 on

. 2
[0,2nt] for x = z and xs—ﬁ. Thus the two graphs intersect at Z,Q and 5—7[,—£
4 4 4 2 4 2
and the region bounded by the two graphs on
4 [0,27] is as below.
Observe that sin X > cos X on [0, 7 /4],

Fix)=sin x sinX>cosX on[z/4,57z/4] and sin X > cos X

[57/4,21] and it follows that

/4 Sz/4
A= I(cosx—sin X)dx + j(sinx—cosx)dx
0 /4

2z
+ j (cos X —sin X)dx

gi(¥)=cos x 7/4
= (sin X +cos X); * + (- cos X —sin X)>7*

ke (sin X +cos X)27 ,

=(V2-D+2V2+(1+42) =42
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Example 3 Find the area of the region bounded by the graph of y-x = 6, y-x’=0 and

2y+x=0.

Solution: First we graph the region as follows. We divid the region in two two regions R;
and R; as in the plote to the right

0
0
A = [[x+6+1x]dx=3x" +6x =12
-4
and
2
A, =I(x+6—x3)dx:10
0

Thus the area A of the entire region R is
A=A +A,=22.

1 Reversing the roles of x and y

9 Instead of considering a region R that is
bounded between the graphs of two functions

of x, it is sometimes convenient to consider R as the region between the graphs of two

functions of y. Then the area is computed by integrating along the y-axis, instead of along

the x-axis.

Example 4 Find the area of the region bounded by the graphs of the equations 2y’=x-+4

and y>=x.

Solution: First we sketch the region as below

y=-

re can see that

points (4,-2)
y*=x+4 lays
ence the area
the two graphs

2 2

1
A= Iy -y’ -4y =4y -y’

2 -2
_32
3
Class Work
Find the area A of the regions bounded between the graphs of the equations bellow.
a) y=x’+1 and y=2x+9 b) x=y*-y and x=y-y*
Volume

The cross —section method
If a solid region D has cross-sectional arca A(x) for a < x <b, and if A is continuous on

[a,b], then we define the volume V of D by the fromula
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V = iA(x)dx.

Example 1 Show that the volume of a sphere of radius r is
3
V=3
Solution: If we place the sphere so that its center is at the origin then the plane Py
intersects the sphere in a circtle whose radius (from the Pythagorean theorem) is

cross-section area is

r’ —x*. So that
AX) =y’ =z(r’ —x*)

y =
Using the formula with a =—r and b =r, we have

V = jA(x)dx :.r[yr(r2 —x*)dx

Class work
Suppose a pyramid is 4 units tall and has a squere base 3 units on a side. Find the volume

V of the pyramid.

134

Prepared by Tibebe-selassie T/mariam



The Disc Method
We now move on to vet another application of definite integrals: vol-

umes of revolution. Volumes of revolution are solids whose shapes can be
generated by revolving some curve(s) about some axis in three-space. If we
can set things up so that a solid of revolution is generated by revolving the
region between the graph of a continnous function f{x),a < x < b and the x
axis, and the axis of rotation is the x axis {see diagram below), we can then
caleulate the volume in the following way:

fix)

aw

Area =dA
(strip)

Volume : dV
(disc)

The steps to follow are very familliar: (1) sketch the region to be revolved
(2) Draw a small strip perpendicular to the
axis of revolution then revolve it about
the axis of rotation and calculate the volume
that it generates, say dV" (see Fig 6)
(3) Integrate 41 to find the entire volume
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Example 2 Find the volume generated by revolving the region bounded by
=7,y =10, and o+ = 4 about the x-axis.

Solution: We first sketch the region in question, and draw our small strip
perpendicular to the x-axis (with width oz):

Rotating the strip about the x-axis we see that we get something of the
form:

|_|
dx

Figure 8: volume = wrih
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This is clearly a cylindrical shape and so has volume given by the classical
formula: v = ar?h, where r is the radius of the cylinder, and h is the height.
Looking at the specific solid generated by the strip here, we see that i = dr
and r=the length of the strip =the y-value of the curve =/r. So the volume
generated by the strip is given by:

dV = mrih

= 7(v/7)de

= gxdx

We also see from the sketch that x varies from 0 to 4 in the region, so these
are our limits of integration. Our volume is therefore represented by:

V = f; Tards

1'2 !
-]
= 7(8 —0)
= BT
The Washer Method
The next examples illustrate the above process which is sometimes called
the method of washers, for a soon obvious reason { the strip generates a
solid resembling a washer).
R = outer radius

r = inner radius
-

In

Figure 9: washer volume = 7(R? — r%)h

To find the volume V', of such an animal, we simply find the volume of
the large disc as if it were solid {7 #%i)and then subtract the volume of the
hole (7r2h). This gives us the formula:

dV = 7(R% —r3)h

The use of the above formula is better illustrated through some examples:

Erxample 7. Find the volume generated by revolving the region bounded by
y=1224+2 y=1 7=0and x = 2 about the x-axis.
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Solution: We first sketch the region in question, and draw our small strip
perpendicular to the x-axis (with width dx):

¥ ¥=x 42
6T
2
1 =1 P

I2 U =
i+
2

_ﬂ

iy x

2
Figure 10:

Rotating the strip about the x-axis we see that we get something resem-
bling figure 11.

R=x2 +2

=1

—

dx
The volume generated by the strip is one of a washer with F = (the

distance from the x-axis to the outer edge of the strip) = 2% + 2, r = (the
distance from the x-axis to the inner edge of the strip) = 1. and h = dr. So
the volume generated by the strip is given by:
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dv = m (R —r)h
= r[(x? + 2)? — (1%)]dx

= w(x? + 422 4+ 3)dr

We also see from the sketch that x varies from 0 to 2 in the region, so these
are our limits of integration. Cur volume is therefore represented by:

Vo= FI:JE'-'T'{?‘2 +2) — [12}:;!.|'

Just as with areas, we sometimes nse horizontal strips for fnding volumes.
This comes about sinee the method we learned above requires the strips to
b perpendicular to the axis of rotation, so if we revolve a region about, say,
the v-axis then our strips must be horizontal. All other mechanics of such a
problem are business as usual as we shall see:

Erample 8. Find the volume generated by revolving the region bounded by
y =2 y = 8,and = 0 about the line v = —1.

Solution: We first sketch the region in question, and draw our small strip
(with width dy) perpendicular to the axis of rotation :

y=8
[i,8) (2,8

; <y
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Rotating the strip about the axis of rotation we see that we get something
resembling fipure 13,

R=yy + 1

r=1
—

Figure 13:

The volume generated by the strip is one of a washer with i = (the
distance from the axis of rotation to the outer edge of the strip)=(1+the x
value of the outer curve) = 1 +_r;§. 1 = [the distance from the axis of rotation
to the inner edge of the strip) = 1, and h = dy. So the volume generated by
the strip is given bv:

dV =a(R2—rY)h
= a[(1+y7)® — (12)]dy
= m{y® +2y7)dy

We also see from the sketeh that v varles from (0 to 5 in the region, so these
are our limits of integration. Our volume is therefore represented by:

R 5 2 1
Vo= [, wl{yT +2y7)dy

=7 [ (y5 +2y3)dy

1] 5
1 E
0

Class Work
Let f(x)=5x and g(x)=x" and let R be the region between the graphs of f and g on [0,3].
Find the volume of the solid obtained by revolving R about the x-axis.
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6 Sequences and Series

In this chapter we first study sequences, which by definition are functions since they are
helpful in the study of series. Series can be used to represent many of the differentiable
functions such as polynomial, exponential, logarithmic etc. functions. A major advantage
of the series representation of functions is that it allows us to evaluate integrals of the

form say I sin+/x dx and I e dx and also approximate numbers such as ¢, 7, and /2 .

6.1 Definition and Notions of Sequence

An ordered set of numbers such as a,,a,,a,,...,a,,...1s called a sequence and usually
designated briefly by {an}. Each number a, is a term of the sequence. In particular the
nth term of a sequence is denoted by a,. We may also define a sequence as a function.

Definition 6.1 A sequence is a function whose domain is the collection of all integers
greater than by or equal to a given integer m(usually O or 1).
Observe if we define a function by
f(ny=a, fornx>1 (1)
then the ordered set of numbers a,,a,,a,,...,a,,...determines a sequence. As a result we

normally suppress the symbol f and just write {an }::1 for the sequence defined in (1).
Similarly if
f(ny=a, fornzm
then we would write {a, }::m for the sequence.
Example 1 List the first four terms and the tenth term of each sequence:

(a) {(—1)“ 2—”} ® 2+,  (© {@ } ) {2)7,

n+1

Solution: To find the first four terms, we substitute, successively, n =1, 2, 3, and 4 in the
formula fora,. The tenth term is found by substituting 10 for n. Doing this and

simplifying gives us the following:

Sequence nth term a, | The first four terms Tenth term
© a1 2N 4 3 8 20
(a) {(_l)n_l 2—n } (_1) 1_1 15_5953_5 —H
n+1j) . n+
(b) {2 +(0.1)" }‘*’ 2+(0.H)"" |2,2.1,2.01,2.001 2.000000001
: n=0
" 1" 111 1
olff & e :
n=0
@ {2, 2 2,222 2

When the first few terms of a sequence are given, the general term is obtained by
inspection.
Example 2 Obtain the nth term for each of the sequences:

a)l,4,9,16,25,... b)3,7,11,19,23,...
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Solution: (a) The terms of the sequence are the squares of the positive integers; the nth
term is n’.
(b) This is an arithmetic progression having first term A; = 3 and common difference
d=4. The nth term is A;+ (n —1)d = 4n —1. Note, however, that the nth term can be
obtained about as easily by inspection.

Exercise 2.1
1. Write the first five terms and the tenth term of the sequence whose nth term is:

n-1
a) 4n—1 by EV o 11
n+1 n!
2. Write the nth term for each of the following sequences:
a) 2,4,6,8,10,12,... b) 2,-5,8,-11,14,...  ¢) 3,4,5/2,1,7/24,...

6.2 Convergence of Sequences

A sequence {an} may have the property that as n increase, a, gets very close to

some real number L. For instance in the sequence {(%)” }::0 the nth term (%)” can be made

arbitrary close to 0 by choosing n sufficiently large. This concept leads us to the
following definition of convergence of a sequence.

Definition 6.2 A sequence {a, |, has the limit L, or converges to L, denoted by either
lima, =L or a, >Lasn— o,

n—>
if for every ¢ > 0 there exists a positive number N such that

|an - L| <& whenever n> N.
If such a number L does not exist, the sequence has no limit, or diverges.

If we can make a, as large as desired by choosing n sufficiently large, then the
sequence {an }::1 diverges, but we still use the limit notation and write lim, , a, =o©. A
more precise way of specifying this follows.

Definition 6.3 Let {an }::1 be a sequence. If for every number M there is an integer N
such that
If n>N, then a, >M

we say that {a, | diverges to o, and we write

lima, = .

n—o
Similarly, if for every number M there is an integer N such that
If n>N, then a, <M

we say that {a, | diverges to — oo, and we write

lima, = —oo.

n—oo
But referring to Definition 6.3 to show that a sequence diverges, or referring to
Definition 6.2 to show that a sequence converges or diverges is tedious. One way to
avoid constantly using Definition 6.2 and Definition 6.3 arises from the fact that the
definition of lim,, a, =L is analogues with the definition of lim, ,_ f(X)=L and

similarly, that the definition of lim, , &, = o (Or — o) is analogues with the definition
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of lim,,, f(X)=oo(0r —o0). These observations lead us to the following theorem.
Theorem 6.4 Let {an }::1 be a sequence, L a number, and f a function defined on [m,o)
such that f(n)=a, for n>m. If lim f(x) =L, then {an }::1 converges and lima, = L.

-0

If lim f(x) = oo(0r lim f(x) = —o0), then {a, |7, diverges, and lima, = (lima, = ).

n—oo

Thus lima, = lim f(x).

n—o n—oo

The following example illustrates the use of Theorem 2.4.

0

Example 1 Determine whether the sequence {2 + —2} converges or diverges.
n"Jn.,

Solution: We let

f(x):2+i2 for x> 1
X

X—>00 X—0 X—0 X—0 X 2

Then f(n):2+i2 for n>1. Since limf(X)zlim[2+izj:1im2+limiz2. We
n X

then conclude from theorem 2.4 that

lim[2 + LZ] =2.
n—oo n

Thus the sequence converges to 2.
Example 2 Determine whether the sequence converges or diverges:

(@ n* +2f7, ) {-D"}1
Solution: If we let
f(x)=x>+2 forevery x>1
then f(n)=n’+2 forevery n>1. Since lim(x® +2) = oo, by Theorem 6.4

lim(n® +2) =0,

Hence the sequence diverges.
(b) Letting n=1,2,3, . . . , we see that the terms of (-1)" oscillate between 1 and —1 as
follows:
-1 ,1-1,1,-1,...
Thus, !i_r)n(—l)” = oo does not exist, so the sequence diverges.

Example 3 Let r be any number. Show that the sequence {r” }::1 diverges for |r| >1 and
r =—1. show that for all other values of r the sequence converges, with

] 1 forr=1

limr" =

== 0 for|rj<1

Solution: First we consider nonnegative values of r. Let
f(x)=r" for x>1
SO
that f(n)=r" for n>1.1t follows from our analysis of exponential functions that
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0 for0<r<l1
limr*=41 forr=1

o o forr>1
By theorem 6.4 this means that
0 for0<r<l1

limr" =41 forr=1 (x)

n—oo

o forr>1

Thus {r" }::l diverges for r >1and converges for 0 <r <1. Next we consider negative

[e]

values of r. If r = —1, then {r” }:O:l becomes {(—1)”}

n=l12

which diverges by Example 2 (b).
", we know from (+) that

0 for—-1<r<0
o forr<-1

If r # —1, the since ‘r“‘ = |r

lim|r"

n—oo

= lim|r|"=

n—o

It follows that limr" =0 when —1<r <0 and that limr" does not exist when r < —1.

n—oo n—o0

Example 4 Show that

lim%/n =1.

n—o0

Solution: Notice
n n= nl/n :e(l/n)lnn

Thus we let
f(x)=e"™" for x>1

so that f is continuous and f(n)=e"’™"™" for x> 1. Since
limx =00 =limln

n—oo n—o0

by I’Hopital’s Rule implies that
L GV, SR N
n—»wo X n—wo | n—ow ¥

and thus lim f(x) = lime"*"™* =¢° =1

6.2.1 Convergence Properties of Sequences
Limit theorems that are analogous to those stated for real valued functions can be
established for sequences. That is if {an }::m and {bn }:’:m are convergent sequences, then
lim(a, +b,) =lima, +limb,
N> N

N—o0

limca, =clima,

n—ow n—oo

lima b, =lima, limb,
lima,

lim— ="2*— (provided limb, # 0)

n—oo bn llm b n—oo

n
n—oo
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3

Example 5 Find lim ———-.

n-©2N° +4n
Solution: We divide both the numerator and denominator by n’® and apply the above limit
theorems as follows:

lim— = lim I —
oo 2n” +4n oo 2+(4/n7)  lim[2+(4/n7)]
_ ! _ 1 1
lim2 +1lim4/n*> 240 2’

n—o n—w

The version of the squeezing Theorem for sequences is as follows:
Theorem 6.5 If {a,}” ,{b,} ,and {c | are sequences and a, <b, <c, for every n
and if

lima, =L =limc_,

n—oo n—o
then limb, = L.
n—o
c 2

Example 6 Find the limit of the sequence {Snzln n}.

Solution: Since 0 <sin’ n <1 for every positive integer n,

Moreover, lim0 = 0. Hence it follows from the squeezing theorem that

n—o0
sin’n
lim =0.

n—oo 2n

Hence the limit of the sequence is 0.

6.2.2 Bounded Monotone Sequences

In analogy with boundedness for a function we say that a sequence {an }w is bounded if

n=m
there is a number M such that |an| <M for every n>m. Otherwise we say that the

0

sequence is unbounded. For instance the sequences {1/ n}w and {(—1)”} are bounded,

n=1 n=1
0 .
whereas the sequence {nz }n=1 is unbounded.

The following theorem gives as important criteria boundedness and divergence of
sequences

Theorem 2.6 a. If {a, }” converges, then {a,}"  is bounded
b. If {a, 7 is unbounded, then {a,}” is divergent.
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Example 7 Since {l/n}f=1 is a convergent sequence the by Theorem6. 6 {l/n}:;l is

o,

bounced. And the unboundedness of {n2 }n:l implies by again Theorem 6.6 that {n2 };O:l is

divergent.
Note: The above theorem does not imply that all bounded sequences converge, and

1s bounded but it

o0

indeed that is not the case. For example the sequence {(—l)”}‘n=1

diverges.
Definition 6.7 A sequence {a,}” is said to be an increasing sequence if a, <a,,, for
each n>m. Similarly, {an }:10=m is said to be a decreasing sequence if a, >a,,, for each

n=m.

n |” - ) : :
Example 8 The sequences {—1} and {I/n}” are increasing and decreasing
n+1j,.,
sequences respectively by definition 2.7.

The other way of showing whether a sequence {an }‘:Zm is first to find a continuous real

valued function f , if possible, such that f(n)=a, and show that whether f is increasing

or decreasing by using the first derivative test, and consequently decide that the sequence

.. . . . X n
is increasing or decreasing. In Example 8 above if we let f(X) = 1 then f(n) = 1
X+ n+

1

1)’

and f'(x) :( >0 for every X thus f is an increasing function for every X
X

n | . : - -
consequently the sequence {—1} is decreasing. Similarly we can show that {1/ n}n:1
n+1J,..
is decreasing.

Definition 6.8 A sequence which is either increasing or decreasing is said to be

monotonic sequence
Theorem 6.9 A bounded monotonic sequence {a,}”

n=m

increasing, then the limit is the smallest number L such that a, <L for n>m. If the

converges. If the sequence is

sequence is decreasing, then the limit is the largest number L such that a, > L for n>m.
Example 8 Let

a, L for n>1.
n+2

Show that {an }:;1 is convergent.

Solution: Since
1 1 1

an, = = < =a,
n+D)+2 n+3 n+2
The sequence is decreasing. Moreover

0< !
n+2

sl for n>1
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so {a, ", is bounded. Hence {a, |

. 1s a bounded monotonic sequence consequently it is

convergent by Theorem 6.9.
Exercise 6.2 In problems 1-4 evaluate the limit a number oo Or — co.

1. lim(3-2n) 2. lime™'"
3. lim(l+%] 4. limlnl
N—o n n—oo n

Il Determine whether the sequence converges of diverges, and if it converges, find the
limit.

5. Pk 6. {-n"n2"
7. {2_” cosn}:=1 8. {\/n+1—\/ﬁ}:=1
9. {e‘” lnn}:):1 10. {cosm}”

6.3 Subsequence and Limit Points
Definition 6.10 Let {a, }:O:l be a sequence and let {nk}le be a sequence of positive
integers such that n, <n,,, for each k, that is, {n, }le is a strictly increasing sequence.

Then the sequence {ank }:’:l is called a subsequence of the sequence {an }::1-

o0

Example 1 Consider the sequence {l} . If we let n, =2k for each positive integer k,
n

n=1

, 1" . [ 17 :
the corresponding subsequence of {—} is {—} = {—} . Furthermore if we let
n n=1 2k k=1 2n n=1
{nk}le be any strictly increasing sequence of positive integers, then the sequence
1" . 1"
— is a subsequence of the sequence {—; .
nk n=1 n n=1

Note: If {a, |7, is a sequence, then {a, }”

., 1s a trivial subsequence of itself.

Theorem 6.11 If the sequence {a,}”

., converges to L, then every subsequence of the

sequence {an }::1 also converges to L.

1" .
Example 2 Observe that the sequence {—} in Example 1 above, converges to 0,
n n=1

! and 1 converge to 0.
2n-1J ., 2nJ .

Definition 6.12 If the sequence {an }::1 diverges but does not diverge to positive infinity

consequently by Theorem 2.11 the subsequences {

or to minus infinity, then the sequence {an }m

. 1s said to oscillate to be an oscillating

sequence.
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o0

Example 3 The sequence {(—1)”} is an oscillating sequence on the other hand even if

n=1
-n"” . . .
the terms of the sequence —— go up and down, it does not oscillate as it is a
n
n=1

convergent sequence.

Definition 6.13 Let {a,}” be a sequence, the number L is called a limit point of {a, }”

if and only if a subsequence of {an }::1 converges to L.

o0

Example 4 Since the sequences {(—l)2n }::1 and {(—1)2“4} are subsequences of

n=1
{(—1)n }:O:I which converge to 1 and —1, 1 and —1 are the limit points of {(—1)" }::1 :

Exercise 6.3 Give the subsequence(s) and limit point(s) of the following sequences.

1. {ﬂ} 2. {cosnz}”,

n

o0 2 0
2. sin(n—”] 4. n-+1
4 n=1 n n=1

Worksheet

1. Write the first four terms of the sequence and determine whether it is convergent or
divergent. If the sequence converges, find its limit.

a. {sinhn} b. 4\/n2+n—\/n_2} C. {in} c>1

2. Find lima, if it exists where

nN—oo

a. an=(1+ij b. a,=3n+2-3n+l

n
n> 1Y n n
— T
. a,= d a,= sin —
[ n J n+1 2
_n’(nh)

e. a, =tanhn n =
(n+2)!

3. Determine whether the given sequence is monotonic or not, and convergent or not.

{2?3”} b {nﬂ} c. {cosnzrj
o (2} e ] Joe1))
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" {ln(n+2)} h.{ 3" 2}
n+2 (n+1)

4. Determine the convergence or divergence of the sequence {a,} if

o _nn o (1. L o o 1H3+5+...+@2n-1)

B P | ' n> ’ n’
e

d a =32%* e. a S N LV where a and b are constants and b# 0.

n b b
=)
n

{o it |r]<1

o if |r|>1

N

1. Using limr" =

n—o

)" _1\"
o 1m0 b, lim D c. lim¥/4"+5"

n—om 2 n—o e n—ow

6. Let {a,} be sequence with a, = V2 and a,, =+2+a,,n=1.

a. Show that {a,} is convergent
b. Find lima,

nN—oo

7. Let 1 an:L+L+...+ .Show that lima, =1.
1.2 23 n(n+1) oo
. 1 1 :
ii. b, = + +oo+ .Show that limb, =1.
Jn?+1 4n? 42 n’+n N

8. Using the limit theorem sequence it can be show that if a, — 0 and {b, } is bounded

then lima,b, = 0. Use this result to show the following sequences converge to 0.

_ n+1 n _1\n
i {COS”} . {izh{u—”( D } i, {—2 + D }
n n n! e’

10. Find two limit points and subsequences, which converge to each of these points for

o o]
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6.4 Real Series

6.4.1 Definition and Notations of Infinite Series

We may use sequences to define expressions of the form
1 1 1
— ==+
2 4 8
We call such an expression an infinite series. Since only finite sums may be added
algebraically, we must define what is meant by this “infinite sum.” As we shall see, the

key to the definition of infinite series is to consider the sequence of partial sums {Sn},

where Sy i1s the sum of the first k number of the infinite series. For the infinite sum above
the partial sums are given by

1
S, =—
"2
o L 1.3
2 4 4
2 4 8 8
and so on. Thus, the sequence of partial sums {S,} may be written as
13715
2747816’

It follows that
Ss—>1 as n—o.
From intuitive point of view the more numbers of the infinite series that we add, the

closer the sum gets to 1.Thus we write

I 1 1
Il=—+—+—+...
2 4 8

and call 1 the sum of the infinite series.
Definition 6.14 An infinite series (or simply a series) is an expression of the form
a +a,+a,+---+a, +...
or in summation notation,

i a,or > a,
Each numbner1 ay is a term of the series, and a, is the nth term.
Definition 6.15 i) The kth partial sum Sy of the series Zan is
Si=a, +a, +a; +...+a,.
i) The sequence of partial sums of the series Zan is
S1.S2,S5,...,Sh, ...

Definition 6.16 A series Zan is convergent (or converges) if its sequence of

partial sums {S,} converges ,that is ,if
limS, =L for some real number L.

n—o
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Otherwise we say that the series Zan is divergent (or diverges).

Note: Almost all series we will consider is of the form Zan or Zan .Thus for

n=1 n=0

Zan the jth partial sum is S=a, +a, +a, +...+a; and for Zan the jth partial sum
n=1 n=0
i8S, =a,+a, +a;+...3;,.

Example 1: Show that

= 1 1 1 1
Z -+ + ...
nn+l) 1.2 2.3 3-4

n=1
converges and find its sum.

Solution: Using the partial sum representation of a, we have
1 1 1

= =———— for n>1
nn+1) n 1+n

n

]
consequently the jth partial sum S; = z S, of the series is given by

n=1
1. (1 1 11
Si=(1-—)+| === |+| =—— |+
i~ 2)(2 3)(3 4)

{ 1 1j [1 1 J
"<t T
J-1 ) JoJ+l
Since adjacent pairs of numbers cancel each other we have

1 . . 1
Sj =1-—— and thus thj =lim{ 1-——|=1.

J+1 n—o joo0 J+1

Thus the sequence converges and the sum of the series is 1. ¢

The series Z !
m n(n+1)

is called telescopic series.

Example 2: The series Z:(—l)”"1 diverges.
Solution: Since we can write S, as

n

B 1 if nis odd
10 if n is even
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the sequence of partial sums {S;}oscillates between 1 and 0, it follows that lim S, does

n—oo

not exist. Hence the series diverges.

Example 4: Show that the series Zl diverges.

n=1

Solution: Grouping the terms of the series as

I (1 1 I 1 1 1 1 1 1
l+—+|—F+—= |+ -F+—F =+ |+| =+ —F+ -+ — [+
2 [3 4j (5 6 7 8) (9 10 16j

we can see that

1
82 :1+§

2

32:54:1+l+l+121+l+l+l:1+2l
2 3 4 2 4 4 2

1 1t 1 1 1 1 1_ 1 1 1 1 1 1 1 1
S,=5=l+—+—+—+—-+—F+—-F+-—2l+—+—F+—F+—+—+—+—=143 =

: 2 3 456 78 2 4 4 8 8 8 8 2
In general we arrange the making up S, into several groups and then substituting smaller

1
values for the terms so that each group has sum 3 Consequently we get

S, 21+ ] 1 and limS. > lim| 1+ j 1 =0,
2 2 jowo J joo 2

Hence the sequence {Sj }T:I of partial sums is unbounded, as we wished to prove, and

<N
thus Z— diverges. ¢
n

n=1

Definition 6.17 The divergent series Zl is called harmonic series.

n=1

6.4.2 Divergence Test and Properties of Convergent Series

Our next theorem which some times is called a divergence test (or nth term test)
will tell us immediately that certain series diverge.

Theorem 6.18 a. If Zan converges, then lima,=0.

n—oo
n=l1

b. If lima, is not zero (or does nor exist),then z a, diverges.

n—o0
n=1

Question: Is the converse of the statement in theorem 2.5a. above always true? if not give
example.
The next illustration shows how to apply the nth-term test to a series.
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SERIES NTH-TERM TEST CONCLUSION

- 1 . 1 .
21 +— liml+—=1#0 Diverges by thm.2.5
=1 n n—owo n
=1 .1 . e
Z_z r1]1mn—2 =0 Further investigation is needed.
=1 n —>00
=1 .1 . e
Z— lim—=0 Further investigation is needed.
n=1 n—oo n
n n
22— limz— = Diverges.
n=1 n n—-o N

We have seen that the third series is the harmonic divergent series and we shall see in
the next section that the second series is converges.

One of the very important series in solutions of applied problems is the geometric

series which is of the form z cr”, where r and c are constants and c# 0.The

n=m
o0
. : n : . .
convergence of geometric series E cr” depends entirely on the choice of r, as we see in

n=m

the following theorem.

Theorem 6.19 Let r be any number, and let c# 0 and m> 0. Then the geometric series
D" cr” converges if and only if |r| < 1and
n=m

0 m

Der'= o

n=m I-r

Proof: We consider the cases |r| >1 and |r| <1 separately .If |r| >1 ,‘Crn

> |C| for all

n>m thus limcr" # 0 consequently by theorem 2.18(b) the series diverges. If |r| <1,

n—o0

then we use the identity
(A-0)(A+r+r> 4+ 4+riH)=1-r!
which implies that
S;=cr+er™ etor™ T =cr™(14r+r’ 441l

o 1=r
=cr .
()
Since limr! =0as |r|<1,itfollowsthat
J—>x©
limS, == —lim(-ri)=—— ¢
jow 1—r iox 1=r
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The number r is called the common ratio of the geometric series. By the
Geometric Series theorem the sum of s convergent geometric series is equal to the first
term (cr'™) divided by 1-r.

Example 5 Show that Z(%) =2

n=0
Solution: The common ratio of the series is I = 1 ; hence the series is convergent by

theorem 6.19. Since the first term is (%)0 =1 we have

_1
n=0 2

n+3

Example 6 Determine whether or not the series Z:(—l)n
n=0

—- converges, and if so, find

its sum.

) 3n+3 ) 3 n
Solution: Since Z:(—l)n = =2135[— gj and so the series is a geometric series
n=0 n=0

with common ration r = -2, it is convergent. Since the first term is 135(%)0 =135, the

sum is given by

- .3 135 675

z(_l) n-1 - 3 = :

o 5 1-(=5) 8
Combination of Series

The proof of the next theorem follows directly from Definition (6.3)

Theorem 6.20 If Zan and an are convergent series, then

1. Z(an +b,) converges and Z(an +b,) =Zan +an
1i. Z:can converges and ann :CZ a,
iii. Z(an —b, ) converges and Z(an —-b,)= Zan —an
. = 8
Example 7 Show that the series ;37 + D

converge, and find its sum.

. N : : . . 1
Solution: The series Z—n is a convergent geometric series of common ratio r = 3’
n=1

8 S 3 .~ 6
first term — and sum Z—n =3 =2 Moreover the series
3 =3t 11 ~=nn+1)
. . . . - 6
is the convergent telescopic series with sum Z =6.
o n(n+1)

Consequently from theorem (2.20) we have
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8 . Z§+ > =4+6=10. ¢
n:13" n(n+1) —~ 3" n0n(n+1)

Exercise 6.4
L. Compute the third, fourth and nth partial sums and find the sum of the series,
if it converges.

LY 2. S

0 o0 1
3. 4.
Z(2n+5)(2n+3) §4n2—1
II. Use the nth term test to determine whether the series diverges or needs further
investigation.

& 2n S & (7] 1
L. Z4n_1 2. ;(1+HJ 3. nz;tan(3+ﬁj 4, z%

n=1

II1. Express the repeating decimals as a fraction.

1. 0.2 2. 2.32
IV. Determine whether the following series converge and if so find its sum.

< 3 =3 ST 1 3" +4"
1. Zm 2. an_l 3. Z( ——J 1 n

n-1 ol =in(n+1) n

6.5 Convergence Tests for Nonnegative Terms Series

In this section we will develop tests for convergence or divergence of a series Zan that

employ the nth term. These tastes will not give us the sum S of the series, but instead will
tell us only whether the sum exists. For the present we will restrict our attention to
nonnegative series, that is, to series whose terms are nonnegative. For simplicity we

assume that the initial index is 1. The sequence of partial sums {S;} 7, of the nonnegative
series Z a, form an increasing sequence:

S;=a+a,+...+a;<a +a,+...+a;+a;, =S for j>1

j+l

Consequently if {S;} 7, is bounded, then lim S exists, so Za converges. By contrast,

]—)OO =l

if {S;} 7., is unbounded, then lim S,

j~>oo

cannot exist, so Za diverges.
n=1

We now discuss four important convergence tests in the following theorems.
6.5.1 The Integral Test

Theorem 6.21 Let {a,}”, be a nonnegative sequence, and let f be a continuous,

i

decreasing function defined on [1, ) such that
f(n)=a, for n>1

Then the series Z a, converges if and only if the integral L f (X)dx converges.

n=1
Let us see how we can use theorem (6.21) in solving problems.
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Example 1 Use the integral test to prove that the harmonic series
i 1
o1 N

diverges.

Solution: Let f(x)= 1 for x>1, then f(n)= 1 . Since f is nonnegative valued
X n

function and decreasing we can apply the integral test: So

0

t
j Lix = tim [ L dx = lim[In ], = lim[Int —In1] = oo
1 X t—)ool X t—o0 toow

thus the series diverges.

Example 2 Determine whether the infinite series z ne™ converges.

n=l1

Solution: Let f(x)=xe ™ for x>1 then f(n)=ne™ . f is nonnegative-valued
and since f'(x)=e* —2x%™* =e ¥ (1-2x>)<0, f isdecreasing on [1,00). We may
therefore apply the integral test as follows:

© t

2 : - : 2 l.. 1 1

Ixe’X dx =1lim | xe ™ dx = hm[(—g)e X I = ——hm{%——} =—

1 t—ow 1 t—w 2 tow| e e 2e
Hence the series converges.

Definition 6.22 A p-series, or a hyperharmonic series, is a series of the form

= 1 1 1 1
_:1+_+_+...+_+...’
~n’ 2P 3P n’

where p is a positive real number.

Example 3 Show that ZL‘) converges if and only if p>1.
no1 N

Solution: If p <0, then lim(ij # 0 and, by theorem (6.18), the series diverges. If

n—o|\ nP
p =1, we have the divergent harmonic series. Hence from here on in the proof, we
assume that p >0 and p # 1. We shall employ the integral test, defining the ideal

function f by f(x)= ip for x> 1.
X

Since f'is continuous, f(n)= ip, f'(x) =—px " <0, and hence f is decreasing f
n

satisfies the conditions stated in the integral test. Thus we have

© t 1-p t
Iidx=lim x“’dx:limLX }— ! lim(t'"" —1).

1XP too o t—>w _pl_]_pt—m
If p>1, then p-1>0 and the last expression may be written
lim(t"? -1) = b 0-D= b , hence the improper integral converges
1-— p t—owo 1- p 1- p

consequently the p-series converges by theorem (6.8) if p>1.
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If 0<p<l, then 1-p>0 and
lim(t'"™® —1) = 0.

p t—ow

Hence, by theorem (6.8), the p-series diverges. ¢
ILLUSTRATION

p-SERIES VALUE OF p CONCLUSION
I 2 % p=3 Converges
|
II — p=1/3 Diverges
Class Work

Use the integral test to determine whether the series converges or diverges for the series:

a. - Inn b. i ! . c. an e

n N n=2 n(ll’l n)

d i arctan n

n=1

6.5.2 Basic Comparison Tests

The next theorem allows us to use known convergent (divergent) series to establish the
convergence (divergence) of other series.
Theorem 6.23(Comparison Test)

Let Z a, and z b, be nonnegative-term series.
1. If an converges and a, <b, for every positive integer n, then Zan converges.

. If an diverges and a, >b, for every positive integer n, then Zan diverges.

Example 4 Show that z — converges.

3+4

1 .= : .
<— for n>1, and the series Z—n 1s a convergent Geometric
n=1

n

Solution: Since3 !

series it follows from theorem 6.23(a) that z

n= 1

N converges.

Example 5 Determine whether the series below converges or diverges.

o0 o0

= 3sin’ 1
b. nzz(; o c. 22“—1

: n=1

Solution: a) Since > p for n>2 and the series Z T is the divergent p-

1
Jn-1 +/n

series with p=1/2, it follows from theorem 6.23(b) that the series z !

= Jn-1

diverges.
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2 © )
3sm' n < i' for n>0and Z% = 32% = 3e,it follows from theorem 6.23 b)
n! n! ~n “=n

3sin’n

n!

b) Since

that the series Z

n=0

converges.

c) It might be tempting to compare the give series with the convergent series Z—n
n=1

However,

! >
2" -1 2"
and thus it is impossible to determine the convergence or divergence of the given series

for n>1

S w1
by comparing it with the series Z—n But we can see that
n=1

1 1 1 1

S _
2" —1 2" o™

=— =— for n>1
2"@2-1n 2"

and since ZF converges, the comparison test implies that the given series converges.
n=1
Class work: Determine whether the following series converges or diverges.

< 1 - arctann = n’
a. ) ———— b. — C.
nzz;‘n“+n2+1 HZ:;‘ n nz:;n3+1
Theorem 6.24(Limit Comparison Test)
Let Zan and an be nonnegative series.

. a . . .
a. If lim—-=L>0, then either both series converge or both diverge.

n—ow

a
b. If lim—=0 and an converges, then Zan also converges.

n—oo

. a
c. If lim— =ocand an converges, then Zan also converges.

n—oo

To find a suitable series Z b, to use in the limit comparison test when a, is a

quotient, a good procedure is to delete all terms in the numerator and denominator of a,
except those that have the greatest effect on the magnitude. We may also replace any
constant factor c by 1.

Example 6 Determine whether the series converges or diverges:

Z 2n’+1 z 1
a. - b. -
;n5+7n3—2 nz_:'%/n2+1
: 2n’ +1 : :
Solution: a. Let a, =— PR then deleting terms of least magnitude both from
n+/n -
’ 1
the numerator and denominator we get —— = —-. If we choose b, = —-, the series
n n n
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< < B . . .
z b, = 2—3 will be a convergent p-series (with p=3). Since
n=l1 n=l1 n
2n2+1
lim 220 =2 >

nN—oo

n
: . : & 2nt 4l
it follows from limit comparison test (a) that the series z

— - > _converges.
~n’+7n° -2

b. Let a, =

I .
1S a
2

Yn?

1 we then may choose b, = 12 . Since the series Z
yn® +1 n:

divergent p-series (with p=2/3) and

1
3 2

limnfﬂ=l>0
3n2

0

it follows from limit comparison test (a) that the series Z

1
n=1 3\/ n*+1

. ~Inn .
Example 7 Test the series Z— for convergence or divergence.
- N
n=l1

Solution: Let a, =In/n and b, =1/n, we have

diverges.

. a . In/n .
Iim— =lim——=limlnn=wo
n—»w . n—o 1/nN n—oo

. R T B o
We know that the harmonic series Z— is divergent so, by part (c) of the Limit

n=1

. = Inn . .
Comparison Test, Z— is also divergent.
n=1
Class Work: Determine whether the series converges or diverges:

© © 0 2
a. zn+—lnn b. ZSin% c. z 3n "
n=1

3
o N +2n+3 o N+

6.5.3 The Ratio Test and the Root Test
The ratio test and the root test are tests that involve only the terms of the series
being tested; it is not necessary to manufacture another series, an improper integral, or
anything else against which to compare the given series.
Theorem 6.25 (Ratio Test)
Let z a, be a nonnegative series. Assume that a, # 0 for all n and that
limﬁ =r (possibly «)

n—oo a
n

a. If 0<r <1 then Zan converges.
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b. Ifr>1, then Zan diverges.
If r=1, then from this test alone we cannot draw any conclusion about the convergence of
D a,.
Example 1 Determine whether the series converges or diverges.
2 n! & n’ & n!
n=0 2 = 2 n=1 n
Solution: a. Applying the ratio test we have

.a . (n+D! 2" n+l
lim —+ =11m( 1) = lim—— =
n—o0 an n—o 2”+ n! n—>o D

0.

Since r ¢[0,1), the series diverges by theorem (2.25).

a 2 /An+l 2 .
b. Since r = lim”—“zlim% = hml(n—H] 1 and r<1 by the ration test
oo g n—oo n</2" n—ow n 2
o0 n2
the series zz—n converges.
n=1
| n+l1 n
c. Since r =Ilim 8n =lim (n+Di/n+1) = limn— = lim; =—
oo g N n!/n" e (n+1)" e (1+1/n)" e

. = n
consequently from theorem 6.25 that the series Z—n converges.
n

n=1
Theorem 6.26 (Root Test)
Let z a, be a nonnegative series. Assume that

limy/a, =r (possibly o)

n—oo

a. If 0<r<1 then Zan converges.

b. Ifr>1, then Zan diverges.
If r=1, then from this test alone we cannot draw any conclusion about the convergence of
D a,.
Example 2 Determine the convergence or divergence of
= nY = n =( 1\ 7Y
a Z[Hj b 38 . Z[l ; Hj 0y n@
Solution: a. Applying the root test we have

r = timgl| " | = tim{ - g2} = lim—— = c0>1.
n—= \[\ Inn n—=\ lnn n-=1/n

Since r>1, the series diverges.
b. Applying the root test and the fact that lim¥n =1 we have

n—w
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1
r:hmﬂ%)n:MnJﬁ:%<L

n—»o 3

Hence the series converges. 0
The c) and d) are left as exercise.

6.6 Alternating Series Test

If the terms in a series are alternately positive and negative, we call the series an
alternating series. For instance, the series

o0

1) =—1+1-141---

1 11 1
d _1n+1_=1__ Lo
. ZK ) n! 276 24

are alternating series.

Theorem 6.27 (Alternating Series Test)
Let {a,},_, be a decreasing sequence of positive numbers such that lima, = 0. Then the

N—oo

alternating series Z(—l)”an and Z:(—l)"+1 a, converge. Furthermore, for either series
n=1 n=l1

the sum S and the sequence of partial sums {Sj }010:1 satisfy the inequality
s-s|<a,
Example 1 Show that the alternating harmonic series
Z(_l)n71 l :1_l+l_l+
= n 2 3 4
converges.

Solution:  Let a,=1/n, since a,=1/n > 1/n+1 =a,; the sequence {a,} is a decreasing,
nonnegative sequence such that lima, =0. Therefore the alternating harmonic series

n—oo
satisfies the conditions of the Alternating Series Test and consequently must converge.
Example 2 Determine the convergence or divergence of the alternating series:

(0 D

- 4n* -3 p— 4n-3
2n
4n* -3
In applying the alternating series test, we must show that
1. {a,}is decreasing
ii. lima, =0

nN—o0

a.

0
n=

Solution: a. Let a, =

There are several ways to prove (i). One method is to show that the ideal function to a,,

2X
f(x)=
() ==

3 is decreasing for x>1. So finding the derivative of f we have
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(4%x* —3)2 - 2x(8X)

f'(x) =

(0= 3
_ —8x —6
( 3)

Hence f is decreasing and, therefore, f(n)>f(n+1); that is, a, > a,; for every positive
integer k.
To prove (ii), we see that

2n
lima, =lim
n—w n—>oc4n _3

Thus, by the alternating series test the series is convergent.

4n-3
2N 1

im -
o 4n-3 2
and hence the series diverges.
Example 3 Prove that the series

il +(=n"! b

315! (2n 1)'

is convergent, and approximate its sum S to five decimal places.
Solution: The nth term a, =1/(2n—1)! has the limit 0 as n —» o, and a, >a,,, for

every positive integer k. Hence the series converges, by the alternating series test. If we
use S, to approximate S, then, by Theorem (6.27), the error involved is less than or equal

we find that for n =4,

b. we may show that { } is decreasing; however,

2

to a,,, =1/(2n+1)!. Calculating several values of a

as = é ~ 0.0000028 < 0.000005.

n+l°

Hence the partial sum S4 approximates S to vive decimal places. Since

6,1l 1
3 57
:1—i+ L1 ~ (0.841468,
60 120 5040

we have S = 84147.

It follows from the next section that the sum of the given series is sinl, and hence
sinl = 84147.
Class Work

Determine whether the series converges or diverges.

w 1 ® . =, cosNrx
. -1) — b. -1 thn. .
2L 2(=1) o “ Z
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6.7 Absolute and Conditional Convergence

The following theorem is very useful in investigating the convergence of a series
that is neither nonnegative nor alternating. It allows us to use tests that are applicable for
nonnegative term series to establish convergence for other types of series.

Theorem 6.28 If Z|an| converges, then Zan converges.
n=1 n=l1

Proof Ifwelet b, =a, +|an| and use the property —|an| <a, < |an| we have

0<a,+|a,|<2a,], or 0<b, <2a|

If Z|an| is convergent then from the convergent properties of series we know that
n=1

22|an| is convergent. If we apply the basic comparison test, it follows that an is

n=1 n=1

convergent. And again by the convergent properties of series Z:(bn - |an |) 1s convergent.
n=1

Since b, —|an| =a,, ian is convergent.

n=1

Example 1 Prove that the alternating series

o (1Y 1 1 1
anl(_l) l(ﬁj =1_2_3+3_3_4_3+
LY
=

s 3
Theorem (6.28) the series Z:(—l)rH (lj converges. ¢
n

n=1

converges.

Solution: Since z

n=1

3
(1), . .
= Z[—j is a convergent p-series with p=3, from
n

n=1

coshrz/4

2 converges.

Example 2 Show that the series z
n=1

Solution: Calculating a few values of cosnz /4, we can see that the series is neither
nonnegative nor alternating. Thus none of the earlier tests applies directly to it. However,
since

cosnrz/4

n2

<

Lz forn>1

n

=1 . . . .

and Z—Z converges because it is a p-series with p=2, we know by the comparison test
n=1 N

cosnrz/4

that the series Z 5 converges. Consequently Theorem (6.28) tells us that the
n=l n

given series is convergent. ¢
Oral Question: Is the converse of theorem (6.28) always true?
The following definition gives us two special names of series.
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Definition 6.29 Let Za be convergent series. If Z|a | converges, we say that the

n=l1

series Z a, converges absolutely. If Z|an | diverges, we say that the series z a,

n=1 n=1 n=1

converges conditionally.

Example 3 The alternate harmonic series Z(— ) [lj is conditionally convergent
n

n=1

cosn;r/4

while the series Z is absolutely convergent. Note also that all convergent

nonnegative series converge absolutely.

Class Work 2. Determine the following series converges conditionally or absolutely:

o0

- n+1 > 1 _'10 "
a. (-1 bz( .. Z( n!)

n=l n+4 = N(Inn) n=1

6.8 Generalized Convergence Tests

By combining Theorem (2.15) with our tests for nonnegative series, we obtain
convergence tests that apply to any series, nonnegative or not.

Theorem 6.30 (GENERALIZED CONVERGENCE TESTYS)
Let Zan be a series.

n=1

a. Generalized Comparison Test. If |a | <|b,| for n>1,and if i|bn| converges, then

n=1

Zan converges (absolutely).

n=1

b. Generalized limit Comparison Test. If lim|a, /b,| = L, where L is a positive

number, and if Z\ b, | converges, then Zan converges(absolutely).

n=1 n=1

c. Generalized Ratio Test. Suppose that a, # 0 for n >1and that

lim

n—oo

! H‘ =r (possibly )
a‘n

If r<1, then Z a, converges (absolutely). If r>1, thenz a, diverges.

n=1 n=1
If r=1, then from this test alone we cannot draw any conclusion about the
convergence of the series.
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d. Generalized Root Test. Suppose that
limy/a,| =r (possibly o)

If r<1, then Zan converges (absolutely). If r>1, then Zan diverges.

n=1 n=1
If r=1, then from this test alone we cannot draw any conclusion about the
convergence of the series.

0 n

. X
Example 3 Show that the series Z—converges absolutely for |X| <1, converges

n=1
conditionally for x=-1 and diverges for x=1 and for |X| >1.
Solution: If x=0, the series converges. If X # 0, then
X" /(n+1)
x"/n

lim

n—oo

= lim|——x| =[x].

Therefore the Generalized Ratio Test implies that the given series converges for |X| <1

and diverges for |X| > 1.For x=1 the series becomes the harmonic series ZL 1/n, which

diverges. For x=-1 the series becomes

This is the negative of the alternating harmonic series and consequently converges. Since

g

n=1

[Ms

1

>
Il

which diverges, we conclude that z:zl (— 1)” /n converges conditionally. ¢
Example 4 Show that

w (1) 3 5 7

S oy X X X

= 2n+1 35 7

converges absolutely for |X| <1, converges conditionally for |X| =1, and diverges for
X > 1.
Solution: If x=0, the series converges. If x # 0, then we have

=}’

(=1)" 2(n+1)+1
2(n+1)+1 Y |2n +1 2

= lim
(—1)n X2n+1 ‘ n—>oo|2n + 3

2n+1

lim

n—ow

Consequently the Generalized Ratio Test implies that the series converges absolutely for
|X| < 1 and diverges for |X| > 1.1t remains to consider the cases in which |X| =1.For x=-1

The series becomes

S-(-1) &)™
2, n+1 :ZO 2n

= 2N+ +1
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and this converges by the Alternating Series Test. For x=1 the series reduces to
s
= 2n+1

which also converges by the Alternating Series Test. It is easy to show by using the
Integral Test or the Limit Comparison Test that

i 1
= 2n+1
diverges. Hence the given series converges conditionally for |X| =1. 0

Corollary 6.18 Let {a,} ., be a sequence. If

. |a .
lim—""=r<1 or limya,|=r <l
N—o0 an n—oo

then
lima, =0

n—oo
n

Class Work: 1. Show that lim—— = 0 for all x.

n—x nl

. = n
2. Show that the series Z—nxn converges for |X| <e.
n

n=1
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Worksheet VII
1. Give the fourth, fifth, and nth partial sums of

N n . 5 > . (71 © I
o 20 b Z(5n+2)(5n+7) c’zsm(f_ﬁ] d'nz;(_l) 4

n=0 n=1 n=1
2. Use the nth term test to determine whether the series diverges or needs further
investigation.

a. isinnﬂ b. i[l+%)ln(l+lj C. insin%
n=1 n=1 n=1

n
2 n
d nZ:;‘ln(n+1) nz;l [7n 5]

3. Determine whether the following series converge and if so find its sum.

=
Yy 1
) §9n2+3n—2 > ;n(nﬂj ZW Jn

g 1 s . 1

;m €. HZ:I:(_ 1) 2n+2 f. ;[Sln( j-snl(mj}
2 o[ =1 = o+l

g. z 6" h. ;ln( 2 ] Z 2(n+1)

n=1 n

4. If the nth partial sum of a series Z:O:l a, is
n-1

S, =—— finda, and »  a_ .
n+1 n=l
5. Find the value of x for which the series converges, and find the sum of the series
for
a. 1=X+X =X+ 4+ (=D"'x"" +..
b _+(x—3)+(x—3) (x 3)
2 4 8 2!

6. Use CT, LCT, IT, RaT, or Root Test to determine whether the series below
converges or diverges:

= . cos“n = 1
b — d —
2 n?+2" e 1 < sinn+2" = 2n!
. f. In(1+— . _— h.
° nzzll n+3" ;n( o) s nzzll n+s" nz_;(n!)2

.Y & 1-4-7--(3n-2) = sinl/n! o1y
- Z( j B2, 2-4-6---(2n) k. Z ! ! Z(k kj

n=1
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7. Find every real number k for which the series below converge.

| > 1
a. Z b. zn(lnn)k

k
n=1 n lnn n=1

8. Determine whether the series is absolutely convergent, conditionally convergent,
or divergent.

0 o © 1
D 3 ) it S, oy ) (L c. 3 XM

n=l 2n+1 o n . n
d. i(—lo)” e. i(—l)”(ﬁ—\/ﬁ) d. (—1)"(\/n2+1—n)

9. Discuss the convergence of the following series
1-2 2-3 3-4

Il
—_

NgE

n

+ + 4o
3.4.5 4.5.6 5-6-7
! !
b 1,3, S
2 24 2.4-6
c ! + ! + ! + for real of x
Cl+xE 274xE 3T+ X '
d. ! + ! -+ ! o+ for positive values of x.
I+x 14+2x° 1+3x
© 1 if nis a perfect square
e. ».c,, where ¢, =4 1
n=1 P if nis not a perfect squar
| .
o —— if Zn IS an integer.
_ n
e. ch, where C, = 1

n2

10. A series Z a, 1s defined recursively by the equations

I B .
n=1 — if Zn IS not an integer.

_ 2+cosn

n+l T Tan

Determine whether z a, converges or diverges.

a =1, a

11.If Zan is convergent and an is divergent, show that the series Z(an +b, ) is
n=1

divergent.
>N
12. Consider
Z‘ (n+1)!

a) By using the pattern of the partial sums the first four partial sums guess a
formula for the nth partial sum.

b) Use mathematical induction to prove your guess. Show that the given
infinite sum is convergent and find its sum.
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